a= 99
b-a=11
b+c=189
a+b+c=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}=\frac{1111c-99b}{9999c-11b}=\frac{1111a-99d}{9999a-11d}\)
\(\Rightarrow\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\left(đpcm\right)\)
Vậy ....
a) \(\frac{4a-3b}{a}=\frac{4c-3d}{c}\Leftrightarrow4-\frac{3b}{a}=4-\frac{3d}{c}\)
\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
b) \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\Leftrightarrow\frac{9\left(9999-11d\right)-88880c}{9999c-11d}=\frac{9\left(9999a-11b\right)-88880a}{9999a-11b}\)
\(\Leftrightarrow9+\frac{-88880c}{9999c-11d}=9+\frac{-88880a}{9999a-11b}\)
\(\Leftrightarrow\frac{c}{9999c-11d}=\frac{a}{9999a-11b}\)
\(\Leftrightarrow\frac{9999c-11d}{c}=\frac{9999a-11b}{a}\)
\(\Leftrightarrow9999-\frac{11d}{c}=9999-\frac{11b}{a}\Leftrightarrow\frac{d}{c}=\frac{b}{a}\Leftrightarrow\frac{c}{d}=\frac{a}{b}\)
câu b hình như đề sai
\(\dfrac {1111c-99d}{9999c-11d}=\dfrac {1111a-99b}{9999a-11b}\)
Gọi \(\frac{a}{b}=\frac{c}{d}=k\left(k\in R\right)\)thì a = bk ; c = dk . Ta có :
\(\frac{1111c-99d}{9999c-11d}=\frac{1111dk-99d}{9999dk-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\)(1)
\(\frac{1111a-99b}{9999a-11b}=\frac{1111bk-99b}{9999bk-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\)(2)
Từ (1) và (2) , ta có \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\)
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}.\)
TH1: \(a+b+c=0\)
=> \(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 =0
=> 2b -8 =0
=> 2b = 4
=> b = 2.
=> a = 5; c = - 5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017 ( -5) = -9963.
TH2: a + b + c khác 0.
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a+b+c}{2}=\frac{a+b-7}{4c}=\frac{b+c+3}{4a}=\frac{a+c+4}{4b}\)
\(=\frac{a+b-7+b+c+3+a+c+4}{4c+4a+4b}=\frac{2a+2b+2c}{4a+4b+4c}=\frac{1}{2}\)(1)
=> \(\hept{\begin{cases}a+b-7=2c\\b+c+3=2a\\a+c+4=2b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c+7\left(1\right)\\b+c=2a-3\left(2\right)\\a+c=2b-4\left(3\right)\end{cases}}\)
Từ (1) => \(a+b+c=1\left(4\right)\)
Từ (1); (4) => 2c + 7 + c = 1 => 3c = -6 => c = -2
Từ (2); (4) => 2a - 3 + a = 1 => 3a = 4 => a = 4/3
Từ (3); (4) => 2b - 4 + b = 1 => 3b = 5 => b = 5/3
=> A = 20a + 11b + 2017c = \(20.\frac{4}{3}+11.\frac{5}{3}+2017.\left(-2\right)=-3989\)
\(\frac{a+b+c}{2}\) =\(\frac{a+b-7}{4c}\)=\(\frac{b+c+3}{4a}\)=\(\frac{a+c+4}{4b}\)
Xảy ra 2 trường hợp, mình làm trường hợp 1 thôi.
TH1 : \(a+b+c=0\)
=>\(\hept{\begin{cases}a+b-7=0\\b+c+3=0\\a+c+4=0\end{cases}}\)
=> a + b - 7 + b + c + 3 - a - c - 4 = 0
=> 2b - 8 = 0
=> 2b = 4
=> b = 2
=> a = 5 , c = -5
=> A = 20a + 11b + 2017c = 20.5 + 11.2 + 2017.(-5) = - 9963
Lời giải:
Đặt biểu thức đã cho là \(A\)
Ta có:
\(6a^2+8ab+11b^2=2a^2+(2a+2b)^2+7b^2\)
Áp dụng BĐT Bunhiacopxky:
\([2a^2+(2a+2b)^2+7b^2](2+4^2+7)\geq (2a+8a+8b+7b)^2\)
\(\Leftrightarrow 25(6a^2+8ab+11b^2)\geq (10a+15b)^2\)
\(\Rightarrow \sqrt{6a^2+8ab+11b^2}\geq 2a+3b\)
\(\Rightarrow \frac{a^2+3ab+b^2}{\sqrt{6a^2+8ab+11b^2}}\leq \frac{a^2+3ab+b^2}{2a+3b}\)
Thực hiện tương tự với các biểu thức còn lại và cộng theo vế:
\(A\leq \frac{a^2+3ab+b^2}{2a+3b}+\frac{a^2+3ac+c^2}{2c+3a}+\frac{b^2+3bc+c^2}{2b+3c}\)
\(6A\leq \frac{3a(2a+3b)+2b(2a+3b)+5ab}{2a+3b}+\frac{3c(2c+3a)+2a(2c+3a)+5ac}{2c+3a}+\frac{3b(2b+3c)+2c(2b+3c)+5bc}{2b+3c}\)
\(\Leftrightarrow 6A\leq 3a+2b+\frac{5ab}{2a+3b}+3c+2a+\frac{5ac}{2c+3a}+3b+2c+\frac{5bc}{2b+3c}\)
\(\Leftrightarrow 6A\leq 5(a+b+c)+5\left(\frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\right)\)
Theo hệ quả của BĐT AM-GM:
\((a+b+c)^2\leq 3(a^2+b^2+c^2)=9\Rightarrow a+b+c\leq 3(1)\)
Áp dụng BĐT Cauchy-Schwarz dạng ngược:
\(\frac{ab}{2a+3b}\leq \frac{ab}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}\right)\)
\(\frac{bc}{2b+3c}\leq \frac{bc}{25}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{ca}{2c+3a}\leq \frac{ca}{25}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}\right)\)
\(\Rightarrow \frac{ab}{2a+3b}+\frac{bc}{2b+3c}+\frac{ac}{2c+3a}\leq \frac{1}{5}(a+b+c)(2)\)
Từ (1); (2) suy ra:
\(6A\leq 5(a+b+c)+5.\frac{1}{5}(a+b+c)=6(a+b+c)\leq 18\)
\(\Rightarrow A\leq 3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath
a=99
b-a=11 =>b=99=11 => b=110
b+b=189 =>110+c=189 =>c=79
a+b+b=99+110+79=288
Có: a = 99
=> b - a = 11
= b - 99 = 11
=> b = 11 + 99
b = 110
b + c = 189
= 110 + c = 189
=> c = 189 - 110
c = 79
Vậy a + b + c = 99 + 110 + 79 = 288