Tìm x, biết x thuộc N
x-2020/3.4 + x-2020/4.5 + x-2020/5.6 + x-2020/7.8 + x-2020/8.9 = 2/9
Giúp với ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x+2}{2020}+\frac{x+2}{2020}=\frac{x+2019}{3}+\frac{x+2020}{2}$
$\frac{x+2}{2020}+1+\frac{x+2}{2020}+2=\frac{x+2019}{3}+1+\frac{x+2020}{2}+1$
$\frac{x+2022}{2020}+\frac{x+2022}{2020}=\frac{x+2022}{3}+\frac{x+2022}{2}$
$(x+2022)(\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2})=0$
Dễ thấy $\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2}<0$
Do đó: $x+2022=0$
$\Rightarrow x=-2022$
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 + 2020 = 2020
Ta gọi biểu thức đấy là B
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 2020 - 2020
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 0
Có 2020 - x số hạng
B = \(\frac{\text{(2019 − x)(2020 - x)}}{\text{2}}=0\)
=> 2019 + x = 0
x = -2019
=> 2020 - x = 0
x = 2020
➤ Vậy x = {-2019; 2020}
\(2021x\left(x-2020\right)-x+2020=0\)
\(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
Ta có: \(2021x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)
\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)
Vậy x = 2019
B=2021 x 13 + 2009 + 2020 x 2007/2020 + 2020 x520x2020
B=2021 x 13 +2009+2020/1x2007/2020 +2020x520x2020
B=26273+2009+20201/1x2007/20201+2121808000
B=28282+2007+2121808000
B=2121838289
Ta có: 2020-|x-2020|=x
<=> |x-2020|=2020-x
Vì \(\left|x-2020\right|\ge0\) với \(\forall x\)
=> 2020-x\(\ge0\)
=>x\(\le2020\)
Vậy với x\(\le2020\) thì 2020-|x-2020|=x
Bài 2:
Ta có: \(11^{1979}< 11^{1980}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{660}\)
nên \(11^{1979}< 37^{1320}\)