Cho tam giác ABC cân tại A. Tia Ax vuông góc với BC tại H.
a, Chứng minh : AH là tia phân giác của góc BAC.
b, Từ H lần lượt kẻ các tia vuông góc với AB tại E, với AC tại F. Chứng minh : AE = AF.
Giúp với ạ:D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.
a,Ta có: tam giác ABC cân tại A
=>AB=AC
Xét tam giác AHB và tam giác AHC có:
góc AHB=góc AHC=90 độ
AB=AC(cmt)
AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
(bít lm mỗi câu a, thông cảm)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
DO đó; ΔAMH=ΔANH
Suy ra: AM=AN và HM=HN
=>AH là đường trung trực của MN
hay AH\(\perp\)MN
c, Xét ▲AMK và ▲ANK có:
Góc K1 = K2 ( Ah vuông với Mn)
Ak chung
A1=A2 (cmt)
Sra ▲AMK = ▲ANK ( cgv-gn)
Do đó MK = NK ( 2 cạnh tương ứng)
Xét ▲NMP có:
NH là trung tuyến (do HM=HP)
PK là trung tuyến ( do MK = NK) cmt (1)
Suy ra Q là trọng tâm △NMP (2)
Từ (1) và (2) suy ra P,Q,K thẳng hàng
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔBAE=ΔBDE
b: ta có: ΔBAE=ΔBDE
nên BA=BD và EA=ED
=>BE là đường trung trực của AD
hay BE\(\perp\)AD
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH
a: Xét ΔACB cân tại A có AH là đường cao
nên AH là đường phân giác
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{HAE}=\widehat{HAF}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
Em cảm ơn ạ