K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACB cân tại A có AH là đường cao

nên AH là đường phân giác

b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có

AH chung

\(\widehat{HAE}=\widehat{HAF}\)

Do đó: ΔAEH=ΔAFH

Suy ra: AE=AF

8 tháng 1 2022

Em cảm ơn ạ

 

7 tháng 7 2017

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

1 tháng 4 2022

a,Ta có: tam giác ABC cân tại A
           =>AB=AC
  Xét tam giác AHB và tam giác AHC có:
         góc AHB=góc AHC=90 độ
        AB=AC(cmt)
        AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
 (bít lm mỗi câu a, thông cảm)

2 tháng 4 2022

đây ko phải là toán lớp 6 .-.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

4 tháng 5

c, Xét ▲AMK và ▲ANK có:                

Góc K1 = K2 ( Ah vuông với Mn)

Ak chung

A1=A2 (cmt)

Sra ▲AMK = ▲ANK ( cgv-gn)

Do đó MK = NK ( 2 cạnh tương ứng)

Xét ▲NMP có: 

NH là trung tuyến (do HM=HP)

PK là trung tuyến ( do MK = NK) cmt (1)

Suy ra Q là trọng tâm △NMP (2)

Từ (1) và (2) suy ra P,Q,K thẳng hàng

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

b: ta có: ΔBAE=ΔBDE

nên BA=BD và EA=ED
=>BE là đường trung trực của AD

hay BE\(\perp\)AD

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có

AH chung

\(\widehat{EAH}=\widehat{FAH}\)

Do đó: ΔEAH=ΔFAH

Suy ra: HE=HF

hay ΔHEF cân tại H

c: Xét ΔACK và ΔABK có

AC=AB

\(\widehat{CAK}=\widehat{BAK}\)

AK chung

Do đó: ΔACK=ΔABK

Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)

=>BK\(\perp\)AB

hay BK//EH

27 tháng 2 2022

em cảm ơn ạ