a^3-b^3-c^3=3abc và a^2=(b+c)2 tìm a;b;c là số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a^3-b^3-c^3=3abc>0
=>a>b ; a>c
=>2a>b+c
=>4a>2(b+c)
=>4>a
=>4>a
=>2(b+c)=a^2 chia hết cho 2
=>a chia hết cho 2
=>a=2 => b=c=1
Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
Ta có: \(a,b,c\in Z+\)
=> abc>0 =>3abc>0
=>a3-b3-c3>0
=>\(\hept{\begin{cases}a>b\\a>c\end{cases}}\)
=>\(a+a>b+c\)
=> \(2a>b+c\)
=>\(4a>2\left(b+c\right)\)
=>\(4a>a^2\)=>\(4>a\)(1)
Mà a2=2(b+c) (*) chia hết cho 2 =>a chia hết cho 2 (2)
Từ (1) và (2) => a=2
Thay a=2 vào (*) =>\(b+c=2\), mà \(b,c\in Z+\) =>b=c=1
KL: (a,b,c)=(2,1,1)
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1