Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bca
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
Ta có: \(a,b,c\in Z+\)
=> abc>0 =>3abc>0
=>a3-b3-c3>0
=>\(\hept{\begin{cases}a>b\\a>c\end{cases}}\)
=>\(a+a>b+c\)
=> \(2a>b+c\)
=>\(4a>2\left(b+c\right)\)
=>\(4a>a^2\)=>\(4>a\)(1)
Mà a2=2(b+c) (*) chia hết cho 2 =>a chia hết cho 2 (2)
Từ (1) và (2) => a=2
Thay a=2 vào (*) =>\(b+c=2\), mà \(b,c\in Z+\) =>b=c=1
KL: (a,b,c)=(2,1,1)
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
Vì a,b,c dương nên: \(a^3>b^3\Rightarrow a>b\left(1\right)\)
\(a^3>c^3\Rightarrow a>c\left(2\right)\)
Cộng (1) và (2),ta được: 2a>b+c
\(\Rightarrow4a>2\left(b+c\right)\)
\(\Rightarrow4a>a^2\)
\(\Rightarrow4>a\)
Mà a là số chẵn, nên: a=2
Vì a>b>c,nên: 2>b>c ; b=1,c=1
Vậy a,b,c cần tìm lần lượt là 2,1,1
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
sai r bạn ơi
ai cho bạn nói cái đó lớn hơn 0