K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

+  B A t ^ là góc tạo bởi tiếp tuyến at và dây AB  B C A ^ là góc nội tiếp chắc cung nhỏ  B A ⏜

(hai góc SLT)

3 tháng 1 2017

Giải bài 33 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 33 trang 80 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

11 tháng 4 2017

Ta có = (so le trong) (1)

= (2)

( là góc tạo bởi tiếp tuyến và dây cung, chắn cung AB, là góc nội tiếp chắn cung AB)

Từ (1) và (2) suy ra:

= (3)

Xét hai tam giác AMN và ACB. chúng có:

chung

=

Vậy ∆AMN ~ ∆ACB, từ đó = , suy ra AB. AM = AC . AN

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>\(\widehat{BAC}=90^0\)

Xét ΔABC có

O là trung điểm của BC

OD//AC

Do đó: D là trung điểm của AB

b:

Ta có: ΔOAB cân tại O

mà OD là đường trung tuyến

nên OD\(\perp\)AB

=>OE\(\perp\)AB tại D

 ΔOAB cân tại O

mà OE là đường cao(OE\(\perp\)AB tại D

nên OE là phân giác của \(\widehat{AOB}\)

=>\(\widehat{AOE}=\widehat{BOE}\)

Xét ΔOBE và ΔOAE có

OB=OA

\(\widehat{BOE}=\widehat{AOE}\)

OE chung

Do đó: ΔOBE=ΔOAE

=>\(\widehat{OBE}=\widehat{OAE}=90^0\)

=>EA là tiếp tuyến của (O)

c:Ta có: OE\(\perp\)AB

AB\(\perp\)AC

Do đó: OE//AC

Xét ΔFBC có

O là trung điểm của BC

OE//FC

Do đó: E là trung điểm của BF

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0