xy + y - 3x = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2xy+x+2y=5\\xy+3x-3y=5\end{matrix}\right.\)
\(\Rightarrow2xy+x+2y=xy+3x-3y\)
\(\Rightarrow2xy+x+2y-xy-3x+3y=0\)
\(\Rightarrow\left(2xy-xy\right)+\left(x-3x\right)+\left(2y+y\right)=0\)
\(\Rightarrow xy-2x+3y=0\)
\(\Rightarrow xy-2x+3y-6=-6\)
\(\Rightarrow x\left(y-2\right)+3\left(y-2\right)=-6\)
\(\Rightarrow\left(x+3\right)\left(y-2\right)=-6\)
Xét ước là xong,mấy câu kia tương tự
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
1: \(=-3x^3y\cdot2x^2y^3+3x^3y\cdot xy^2+3x^3y\cdot\dfrac{1}{3}\cdot5\)
\(=-6x^5y^4+3x^4y^3+5x^3y\)
2: \(=\dfrac{1}{3}x\cdot3x-\dfrac{1}{3}x\cdot6+2\cdot3x-6\cdot2\)
\(=x^2-2x+6x-12=x^2+4x-12\)
Mình chỉ phân tích hộ bạn, rồi bạn tự lập bảng và tìm ra giá trị x;y nhé :)
a) xy + x + y = 2
<=> xy + x + y + 1 = 2
<=> x ( y + 1 ) + ( y + 1 ) = 2
<=> ( x + 1 )( y + 1) = 2
b) xy - 10 + 5x - 3y = 2
<=> xy - 3y + 5x - 15 = -3
<=> y ( x - 3 ) + 5 ( x - 3 ) = -3
<=> ( x - 3 )( y + 5 ) = -3
c) xy - 1 = 3x + 5y + 4
<=> xy - 3x - 5y = 5
<=> xy - 3x - 5y + 15 = -10
<=> x ( y - 3 ) - 5 ( y - 3 ) = -10
<=> ( x - 5 ) ( y - 3 ) = -10
d) 3x + 4y - xy = 15
<=> 3x - xy - 12 + 4y = 3
<=> x ( 3 -y ) - 4 ( 3 - y ) = 3
<=> ( x - 4 ) ( 3 - y ) = 3
a)(x-3).(y+5)=-17
\(\Rightarrow-17⋮x-3\)
\(\Rightarrow x-3\inƯ\left(-17\right)=\left\{\pm1;\pm17\right\}\)
+)Ta có bảng:
x-3 | -1 | 1 | -17 | 17 |
y+5 | -17 | 17 | -1 | 1 |
x | 2\(\in Z\) | 4\(\in Z\) | -14\(\in Z\) | 20\(\in Z\) |
y | -22\(\in Z\) | 12\(\in Z\) | -6\(\in Z\) | -4\(\in Z\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;-22\right);\left(4;12\right);\left(-14;-6\right);\left(20;-4\right)\right\}\)
Chúc bn học tốt
a) \(\left(3x-5\right)\left(3x+5\right)=9x^2-25\Leftrightarrow9x^2+15x-15x-25=9x^2-25\Leftrightarrow9x^2-25=9x^2-25\)(đúng)
b) \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\Leftrightarrow x^3-y^3=x^3-y^3\)(đúng)
c) \(x^2+y^2=\left(x+y\right)^2-2xy\Leftrightarrow x^2+y^2=x^2+y^2+2xy-2xy\Leftrightarrow x^2+y^2=x^2+y^2\)(đúng)
a: \(\left(3x-5\right)\left(3x+5\right)\)
\(=9x^2+15x-15x-25\)
\(=9x^2-25\)
b: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
c: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)
a: Ta có: \(\left(3x-5\right)\left(3x+5\right)\)
\(=9x^2+15x-15x-25\)
\(=9x^2-25\)
b: Ta có: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
c: Ta có: \(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\)