K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

10 tháng 7 2019

Bạn gõ lại đề đi :v

Đọc chả hiểu đề gì cả ... đề k có x

Mà phía dưới có cái đáp số x= ... là sao ??

10 tháng 7 2019

a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)

(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)

(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)

x=\(\frac{1}{3}:\frac{13}{12}\)

x=\(\frac{4}{13}\)

13 tháng 7 2017

\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)

\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)

\(\Leftrightarrow x=-1+1=-2\)

Vậy x = -2 

16 tháng 7 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)

\(\Leftrightarrow x+1=1993\)

\(\Leftrightarrow x=1992\)

15 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{6}{7}=\frac{1}{7}\)

\(\Rightarrow x+1=7\)

\(\Rightarrow x=7-1=6\)

vậy x = 6

15 tháng 5 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{x\left(x+1\right)}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...........-\frac{1}{x}-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{6}{7}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{7}\)

\(\Rightarrow x+1=7\)

\(\Rightarrow x=6\)

Vậy x = 6

7 tháng 1 2020

Ta thấy các số hạng của vế trái đều có dạng \(\frac{1}{n\left(n+1\right)}\) với \(n\) là số tự nhiên.

Lại có: \(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

Khi đó, phương trình trở thành:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right)x}+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2016}\)

\(\Leftrightarrow x+1=2016\)

\(\Leftrightarrow x=2015\)

Vậy \(x=2015\)

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{4032}\)

\(\Rightarrow x+1=4032\Rightarrow x=4031\)

Vậy \(x=4031\)

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2032}\)

Vì 1 = 1

=> x + 1 = 2032

=> x = 2032 - 1

=> x = 2031

9 tháng 8 2016

bó tay