1-2+3-4+5-6+...-210+211
làm từng bước giúp e với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq 0; -0,2$
PT $\Leftrightarrow \frac{8(x+0,2)+6x}{x(x+0,2)}=20$
$\Leftrightarrow \frac{14x+1,6}{x(x+0,2)}=20$
$\Rightarrow 14x+1,6=20x(x+0,2)$
$\Leftrightarrow 20x^2-10x-1,6=0$
$\Leftrightarrow x^2-\frac{1}{2}x-0,08=0$
$\Leftrightarrow (x-\frac{1}{4})^2=\frac{57}{400}$
$\Rightarrow x-\frac{1}{4}=\pm \frac{\sqrt{57}}{20}$
$\Leftrightarrow x=\frac{5\pm \sqrt{57}}{20}$
\(\frac{3}{5}-\frac{1}{7}+\frac{2}{5}-\frac{6}{7}-\frac{1}{4}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)-\left(\frac{1}{7}+\frac{6}{7}\right)-\frac{1}{4}\)
\(=\frac{5}{5}-\frac{7}{7}-\frac{1}{4}\)
\(=1-1-\frac{1}{4}\)
\(=0-\frac{1}{4}\)
\(=-\frac{1}{4}\)
\(\frac{3}{5}-\frac{1}{7}+\frac{2}{5}-\frac{6}{7}-\frac{1}{4}\)
\(=\left(\frac{3}{5}+\frac{2}{5}\right)-\left(\frac{1}{7}+\frac{6}{7}\right)-\frac{1}{4}\)
\(=1-1-\frac{1}{4}\)
\(=-\frac{1}{4}\)
a) (x+10)(2y-5) = 143
=> (x+10);(2y-5) thuộc Ư(143)={-1,-143,1,143}
\(\orbr{\begin{cases}x+10=-143\\2y-5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-153\\y=2\end{cases}}\)
\(\orbr{\begin{cases}x+10=-1\\2y-5=-143\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\y=-69\end{cases}}\)
\(\orbr{\begin{cases}x+10=1\\2y-5=143\end{cases}}\Rightarrow\orbr{\begin{cases}x=-9\\y=74\end{cases}}\)
\(\orbr{\begin{cases}x+10=143\\2y-5=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=133\\y=3\end{cases}}\)
Vậy ta có các cặp x,y thõa mãn : (-153,2);(-11,-69);(-9,74);(113,3)
b) x+(x+1)+(x+2)+..+(x+30)=1240
=> (x+x+x+...+x)+(1+2+3+...+30)=1240
=> 31x+465=1240
31x = 1240-465
31x = 775
x = 775 : 31
x= 25
c) 1+2+3+...+x=210
\(\frac{\left(x-1\right)}{1}+1=x\)
=> \(\frac{\left(x+1\right).x}{2}=210\)
(x+1)x = 210:2
(x+1)x = 105
chắc ko có x thõa mãn
d) 2+4+6+...+2x=210
=> 2(1+2+3+...+x)=210
1+2+3+..+x= 210:2 = 105
\(\frac{\left(x-1\right)}{1}+1\) = x
\(\frac{\left(x+1\right).x}{2}=105\)
(x+1)x = 105:2
(x+1)x = 52,5
ko có x thõa mãn đề bài
a, x + 10 và 2y - 5 thuộc Ư(143) = {1;-1;143;-143}
x + 10 | 1 | -1 | 143 | -143 |
2y - 5 | 143 | -143 | 1 | -1 |
x | -9 | -11 | 133 | -153 |
y | 74 | -69 | 3 | 2 |
b, x+(x+1)+(x+2)+........+(x+30) = 1240
=> x+x+1+x+2+...+x+30=1240
=> 31x+(1+2+...+30) = 1240
=> 31x + 465 = 1240
=> 31x = 775
=> x = 25
c, 1+2+...+x=210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x+1) = 420
Mà 420 = 20.21
=> x = 20
d, 2+4+...+2x = 210
=> 2(1+2+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 210
Mà 210 = 14.15
=> x = 14
e, 1+3+5+...+(2x-1) = 225
=> \(\frac{\left[\left(2x-1\right)+1\right].x}{2}=225\)
=> \(\frac{2x^2}{2}=225\)
=> x2 = \(\left(\pm15\right)^2\)
=> x = 15 hoặc x = -15
b) Ta có: \(\sqrt{150}-\sqrt{1.6}\cdot\sqrt{60}+4.5\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt{6}-4\sqrt{6}-\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}\)
\(=\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)
\(=3\sqrt{6}\)
\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\\ =5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}\\ =11\sqrt{6}\)
\(\dfrac{1}{\sqrt{3-2\sqrt{2}}}+\dfrac{1}{\sqrt{5-2\sqrt{6}}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2}}+\dfrac{1}{\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{2}-1\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}\)
\(=\dfrac{1}{\left|\sqrt{2}-1\right|}+\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}\)
\(=\dfrac{1}{\sqrt{2}-1}+\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\dfrac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}\right)^2-1}+\dfrac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)
\(=\sqrt{2}+1+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}+\sqrt{3}+1\)
\(a.\left(2x-1\right)^2-\left(4x-3\right)\left(x+5\right)=0\) \(\Leftrightarrow4x^2-4x+1-\left(4x^2+17x-15\right)=0\)
\(\Leftrightarrow-21x+16=0\Leftrightarrow x=\dfrac{16}{21}\) . Vậy ...
b.\(x\left(x-1\right)=3\left(x-1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
c.\(\left(x-1\right)\left(3x-7\right)=\left(x-1\right)\left(x+3\right)\Leftrightarrow\left(x-1\right)\left(3x-7-x-3\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\) . Vậy ...
d.\(\left(x-3\right)^2+2x-6=0\Leftrightarrow\left(x-3\right)\left(x-3+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
=(-1)+(-1)+...+(-1)+211
=211-105
=106