K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

xin lỗi mình không biết :((

7 tháng 1 2022

\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}-2\right|=2\sqrt{3}-3\)

26 tháng 9 2021

\(=\sqrt{3}-1+\sqrt{\left(6-\sqrt{3}\right)^2}=\sqrt{3}-1+6-\sqrt{3}=5\)

\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{39-2\sqrt{108}}\)

\(=\sqrt{3}-1+6-\sqrt{3}\)

=5

12 tháng 12 2023

\(\dfrac{2\left(\sqrt{2}-\sqrt{6}\right)}{3\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{2\sqrt{2}\left(1-\sqrt{3}\right)}{3\cdot\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{4\left(1-\sqrt{3}\right)}{3\cdot\sqrt{4-2\sqrt{3}}}\)

\(=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{-4\left(\sqrt{3}-1\right)}{3\cdot\left(\sqrt{3}-1\right)}=-\dfrac{4}{3}\)

\(u_1=\dfrac{1}{\sqrt{2}};q=\dfrac{1}{\sqrt{2}}\)

\(S_{99}=\dfrac{\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1}{\sqrt{2}}^{99}-1\right)}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{1}{\sqrt{2}}\cdot\left(\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\right):\dfrac{1-\sqrt{2}}{\sqrt{2}}\)

\(=\dfrac{1}{1-\sqrt{2}}\cdot\dfrac{1-2^{49}\cdot\sqrt{2}}{2^{49}\cdot\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

a)

\(\sqrt[3]{(\sqrt{2}+1)(3+2\sqrt{2})}=\sqrt[3]{(\sqrt{2}+1)(2+2\sqrt{2}+1)}\)

\(=\sqrt[3]{(\sqrt{2}+1)(\sqrt{2}+1)^2}=\sqrt[3]{(\sqrt{2}+1)^3}=\sqrt{2}+1\)

b)

\(\sqrt[3]{(4-2\sqrt{3})(\sqrt{3}-1)}=\sqrt[3]{(3-2\sqrt{3}+1)(\sqrt{3}-1)}\)

\(=\sqrt[3]{(\sqrt{3}-1)^2(\sqrt{3}-1)}=\sqrt[3]{(\sqrt{3}-1)^3}=\sqrt{3}-1\)

c)

\((\sqrt[3]{4}+1)^3-(\sqrt[3]{4}-1)^3=[(\sqrt[3]{4}+1-(\sqrt[3]{4}-1)][(\sqrt[3]{4}+1)^2+(\sqrt[3]{4}+1)(\sqrt[3]{4}-1)+(\sqrt[3]{4}-1)^2]\)

\(=2[\sqrt[3]{16}+1+2\sqrt[3]{4}+\sqrt[3]{16}-1+\sqrt[3]{16}+1-2\sqrt[3]{4}]\)

\(=2(3\sqrt[3]{16}+1)\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2019

d)

\((\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}+\sqrt[3]{2})=[(\sqrt[3]{3})^2-\sqrt[3]{3}.\sqrt[3]{2}+(\sqrt[3]{2})^2](\sqrt[3]{3}+\sqrt[3]{2})\)

\(=(\sqrt[3]{3})^3+(\sqrt[3]{2})^3=3+2=5\)

e)

\(E=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

Áp dụng công thức $(a+b)^3=a^3+b^3+3ab(a+b)$ ta có:

\(E^3=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{(20+14\sqrt{2})(20-14\sqrt{2})}.E\)

\(E^3=40+3\sqrt[3]{20^2-(14\sqrt{2})^2}.E\)

\(E^3=40+3\sqrt[3]{8}.E=40+6E\)

\(\Leftrightarrow E^2(E-4)+4E(E-4)+10(E-4)=0\)

\(\Leftrightarrow (E-4)(E^2+4E+10)=0\)

Dễ thấy $E^2+4E+10=(E+2)^2+6\neq 0$ nên $E-4=0$ hay $E=4$

1 tháng 3 2019

2 vế phải là sao

you viết đó

7 tháng 7 2021

\(3\sqrt{9a^6}-6a^3=3\left|3a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow\) biểu thức \(=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow\) biểu thức \(=-9a^3-6a^3=-15a^3\)

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}=\left|x-1\right|+\left|1-3x\right|\)

\(=1-x+3x-1\left(\dfrac{1}{3}< x\le1\right)=2x\)

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{2-\sqrt{3}}.\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2=4^2=16\)

\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}=\sqrt{\left(2\sqrt{7}-4\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=2\sqrt{7}-4+\sqrt{7}-1=3\sqrt{7}-5\)

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)

Xét \(x\ge8\Rightarrow\sqrt{x-4}\ge2\Rightarrow\)biểu thức \(=\sqrt{x-4}+2+\sqrt{x-4}-2\)

\(=2\sqrt{x-4}\)

Xét \(x< 8\Rightarrow\sqrt{x-4}< 2\Rightarrow\) biểu thức \(=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

 

29 tháng 6 2017

Tiếp =))

c)Áp dụng BĐT AM-GM ta có:

\(x\sqrt{y-1}\le\frac{x\left(y-1+1\right)}{2}=\frac{xy}{2}\)

\(2y\sqrt{x-1}\le\frac{2y\left(x-1+1\right)}{2}=\frac{2xy}{2}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3xy}{2}=VP\)

Nên xảy ra khi \(x=y\) thay vào giải ra có: x=y=2

d)\(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

\(pt\Leftrightarrow\sqrt{2x^2+x+1}-2+\sqrt{x^2-x+1}-1=3x-3\)

\(\Leftrightarrow\frac{2x^2+x+1-4}{\sqrt{2x^2+x+1}+2}+\frac{x^2-x+1-1}{\sqrt{x^2-x+1}+1}=3\left(x-1\right)\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x\left(x-1\right)}{\sqrt{x^2-x+1}+1}-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x}{\sqrt{x^2-x+1}+1}-3\right)=0\)

pt trong ngoặc vn nên x=1

Tắm đã làm nốt cho :))

29 tháng 6 2017

Chả ai giúp t gank =)), mà lần sau đăng ít 1 thôi đăng lắm thế này nhìn nản cmn luôn ấy

a)\(\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}=x^2-3x+4\)

\(pt\Leftrightarrow\sqrt{x^2+x-5}-1+\sqrt{-x^2+x+3}-1=x^2-3x+2\)

\(\Leftrightarrow\frac{x^2+x-5-1}{\sqrt{x^2+x-5}+1}+\frac{-x^2+x+3-1}{\sqrt{-x^2+x+3}+1}=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+3\right)}{\sqrt{x^2+x-5}+1}+\frac{-\left(x-2\right)\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\frac{\left(x+3\right)}{\sqrt{x^2+x-5}+1}-\frac{\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\right]=0\)

Pt trong ngoặc <0 nên x=2 là nghiệm

b)\(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)\

Đk:\(x\ge-\frac{1}{2}\)

\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\sqrt{2x^3-x^2+x+1}-\left(2x+1\right)\)

\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\frac{2x^3-x^2+x+1-\left(2x+1\right)^2}{\sqrt{2x^3-x^2+x+1}+2x+1}\)

\(\Leftrightarrow\frac{x^2-3x}{2}-\frac{2x^3-5x^2-3x}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)

\(\Leftrightarrow\frac{x\left(x-3\right)}{2}-\frac{x\left(x-3\right)\left(2x+1\right)}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)

\(\Leftrightarrow x\left(x-3\right)\left(\frac{1}{2}-\frac{2x+1}{\sqrt{2x^3-x^2+x+1}+2x+1}\right)=0\)

Pt trong ngoặc vô nghiệm nốt nên 

\(\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)