K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Trả lời

Giả sử n là số có 3 chữ số

\(\Rightarrow n\le999\Rightarrow S\left(n\right)\le27\)

\(\Rightarrow n+S\left(n\right)\le1026\)=> Loại

\(\Rightarrow\)n là số có 4 chữ sso

\(\Rightarrow S\left(n\right)\le36\)

\(\Rightarrow n\ge2018-36\)

\(\Rightarrow n\ge1982\)mà \(n\le2018\)

TH1: Nếu n=19ab

Ta có: 19ab+1+9+a+b=2018

\(\Rightarrow11a+2b=108\)

\(\Rightarrow a⋮2\Rightarrow a\)chẵn và \(\le8\)

\(\Rightarrow\)Không tìm được B là chữ số

\(\Rightarrow\)Loại TH1

TH2: Nếu n=20cd

\(\Rightarrow2000+10c+d+2+c+d=2018\)

\(\Rightarrow11c+2d=16\)

Vì \(16⋮2\Rightarrow11c⋮2;2d⋮2\)

\(\Rightarrow c⋮2\Rightarrow c=0\)

\(\Rightarrow d=8\)

Vậy n=2008

9 tháng 5 2018

Vì \(S(n)+n=2018\Rightarrow n< \)hoặc \(=2018\)

\(\Rightarrow S(n)< \)hoặc \(=1+9+9+9=28\)

\(\Rightarrow\)n có dạng 19ab hoặc 20ab

Trường hợp 1 :

19ab + 1 + 9 + a + b = 11a + 2b + 1910 = 2018

11a + 2b = 108

=> a chia hết cho 2 và b< 10 nên loại

Trường hợp 2 :

20ab + 2 + 0 + a + b = 2018

2002 + 11a + 2b = 2018

11a + 2b = 16

Nên a chia hết cho 2 nên a = 0 và b = 8

Vậy số cần tìm là 2008

Chúc bạn học tốt~

26 tháng 11 2017

Ta thấy : 

• n<3 chữ số:999+(9+9+9)<2016=> n>3 chữ số 

• n>5 chữ số: 9999+(9+9+9+9)>2016 

=> n có 4 chữ số 

Khi n có 4 chữ số ta có \(2016-36\le n\le2016=>1980\le n\le2016\)

  => n có dạng 19ab và 20cd

• TH1: n=19ab

Ta có: 19ab +1+9+a+b=2016

=> 1900+1+9+11a+2b=2016

=> 1910+11a+2b=2016

=> 11a+2b=106

Vì 2b chẵn, 106 chẵn => 11a là số chẵn

=> a là số chẵn

Mà a < 10 và n >= 1980

=> 11a=88 => a=8 => b=9

Ta có số 1989

•TH2: n=20cd 

Ta có 20cd +2+c+d=2016

=> 2002+11c+2d=2016

=> 11c+2d=14

Ta thấy 2d chẵn, 14 chẵn => 11c chẵn => c chẵn

Và 11c<14 => c=0 => d=7

Ta có số 2007

Vậy n=1989; n=2007

6 tháng 6 2020

Bạn Trịnh Quỳnh Nhi làm đúng rồi đó mình cũng làm như thế

26 tháng 9 2021

Giải:

Nếu nn là số có ít hơn 44 chữ số thì n999n≤999 và S(n)27S(n)≤27

n+S(n)999+27=1026<2014⇒n+S(n)≤999+27=1026<2014 (không thỏa mãn)

Mặt khác nn+S(n)=2014n≤n+S(n)=2014 nên nn là số ít hơn 55 chữ số

n⇒n là số có 44 chữ số S(n)9.4=36⇒S(n)≤9.4=36

Do vậy n201436=1978n≥2014−36=1978

Vì 1978n20141978≤n≤2014 nên [n=¯¯¯¯¯¯¯¯¯¯¯19abn=¯¯¯¯¯¯¯¯¯¯¯20cd[n=19ab¯n=20cd¯

*Nếu n=¯¯¯¯¯¯¯¯¯¯¯19abn=19ab¯ ta có:

¯¯¯¯¯¯¯¯¯¯¯19ab+(1+9+a+b)=201419ab¯+(1+9+a+b)=2014

1910+11a+2b=201411a+2b=104⇔1910+11a+2b=2014⇔11a+2b=104

Và 11a=1042b1042.9=8611a=104−2b≥104−2.9=86

810<aa=8⇒8≤10<a⇒a=8

b=8n=1988⇒b=8⇒n=1988 (thỏa mãn)

*Nếu n=¯¯¯¯¯¯¯¯¯¯¯20cdn=20cd¯ ta có:

¯¯¯¯¯¯¯¯¯¯¯20cd+(2+0+c+d)=201420cd¯+(2+0+c+d)=2014

2002+11c+2d=201411c+2d=12⇒2002+11c+2d=2014⇒11c+2d=12

Và 11c1211c≤12⇒[c=0c=1[c=0c=1

+) Với c=0d=6n=2006c=0⇒d=6⇒n=2006 (thỏa mãn)

+) Với c=12d=1c=1⇒2d=1 (không thỏa mãn)

Vậy n={1988;2006}