K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNI và ΔMKI có

MN=MK

MI chung

NI=KI

Do đó: ΔMNI=ΔMKI

b: Ta có: ΔMNK cân tại M

mà MI là đường trung tuyến

nên MI là đường phân giác

7 tháng 1 2022

cho hình vẽ?

a: Xét ΔMNI và ΔMKI có 

MN=MK

MI chung

NI=KI

Do đó: ΔMNI=ΔMKI

b: Ta có: ΔMNK cân tại M

mà MI là đường trung tuyến

nên MI là đường phân giác

c: Xét tứ giác MNHK có 

I là trung điểm của MH

I là trung điểm của NK

Do đó: MNHK là hình bình hành

Suy ra: MN//HK

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

22 tháng 2 2020

I M N Q P

Xét \(\Delta MIN\)và \(\Delta QIP\)có:

IM = IQ (gt)

\(\widehat{MIN}=\widehat{QIP}\left(gt\right)\)

NI = PI (gt)

\(\Rightarrow\Delta MIN=\Delta QIP\left(c.g.c\right)\)

Bạn có thể vẽ hình câu b mình xem được không?

22 tháng 2 2020

đây là hình cả bài, giải giúp mình

M P N H Q K I - - - - - -

3 tháng 1 2019

M N Q D K E i

a) Xét tam giác MNI và tam giác MDI có :

MN = MD ( gt )

NI = ID ( gt )

MI chung

=> đpcm

b) Vì tam giác MNI = tam giác MDI ( cmt )

=> góc NMI = góc DMI ( 2 g.t.ứ )

Xét tam giác MNK và tam giác MDK có :

MN = MD ( gt )

góc NMI = góc DMI ( cmt )

MK chung )

=> tam giác MNK = tam giác MDK ( c-g-c )

=> NK = DK ( 2 c.t.ứ ) 

=> đpcm

c) Chứng minh tam giác NEK = tam giác DQK ( c-g-c )

=> góc NKE = góc DKQ ( 2 g.t.ứ )

Mặt khác ta có : góc NKD + góc DKQ = 1800 ( kề bù )

=> góc NKD + góc NKE = 1800

Hay góc DKE = 1800

=> D, E, K thẳng hàng ( đpcm )

3 tháng 1 2019

Chứng Minh tam giác NEK = tam giác DQK kiểu gì hả bạn

12 tháng 3 2019

N P M I K H

Cm: a) Ta có: góc NPM + góc NPK = 1800 (kề bù)

                     góc NMP + góc NMI = 1800 (kề bù)

Và góc NPM = góc NMP (vì t/giác MNP cân tại N)

=> góc NPK = góc NMI

Xét t/giác MNI và t/giác NPK

có NP = NM (gt)

  góc NPK = góc NMI (cmt)

  PK = MI (gt)

=> t/giác MNI = t/giác NPK (c.g.c)

b) Xét t/giác NHM và t/giác NHP

có NP = NM (gt)

 góc NHP = góc NHM = 900 (gt)

 NH : chung

=> t/giác NHM  = t/giác NHP (ch - cgv)

=> HM = HP (hai cạnh tương ứng)

c) Ta có: T/giác MNI = t/giác NPK (cm câu a)

=> NK = NI (hai cạnh tương ứng)

=> t/giác NIK là t/giác cân tại N