K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Gọi d là ƯCLN của n, n+1

=>n:d;n+1;d

=>(n+1)-n;d

=>1;d

=>n/n+1 là phân số tối giản

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

7 tháng 4 2018

Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).

Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d

Vậy d = 1

Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.

23 tháng 7 2018

a)\(\frac{27}{3^{n+1}}=3^2\Leftrightarrow\frac{27}{3^{n+1}}=9\)

                       \(\Leftrightarrow3^{n+1}=27\div9\)

                       \(\Leftrightarrow3^{n+1}=3\)

                       \(\Leftrightarrow3^{n+1}=3^1\)

                       \(\Leftrightarrow n+1=1\)

                       \(\Rightarrow n=1-1\)

                       \(\Rightarrow n=0\)

=> Tích

23 tháng 7 2018

bn thiếu câu b) rồi

=> ko tích

10 tháng 2 2018

Gọi \(ƯCLN\left(n+1;2n+3\right)\)là d.Ta có:

\(n+1⋮d\Rightarrow2n+2⋮d\)

\(2n+3⋮d\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s tối giản

16 tháng 3 2022

Gọi ƯCLN (n;n+1) = d ( d \(\in\)N*) 

\(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

16 tháng 3 2022

tài năng quá mấy bạn