Tìm số tự nhiên a lớn nhất sao cho: 360 ⋮ a; 135 ⋮ a; 450 ⋮ a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
a) Vì 13, 15,61 chia cho a đều dư 1 => 13;15;61 \(⋮a-1\)
=> a-1 thuộc ƯC(13;15;61)
Mà a lớn nhất => a-1 thuộc ƯCLN(13,15,61)
Mà 13;15;61 là các số nguyên tố cùng nhau => ƯCLN(13;15;61) = 1
=> a-1=1
=>a=2
Vậy a=2.
b) Ta có: 149 : a dư 29 => (149-29) thì chia hết cho a ( a > 29)
235 : a dư 35 => ( 235 - 35) chia hết cho a ( a> 35)
=> a thuộc ƯCLN(120,200) = 40
=> a = 40
Vậy a = 40
c) câu c tương tự câu b
\(a=0;1;2;3\) ở câu a
\(a=0;1;2;3;4;5;6;7\) ở câu b
\(a=0;1;2;3;4;5;6\) ở câu c
1/
12 , 14 , 60 chia hết cho a
mà số lớn nhất thỏa mãn yêu cầu là 2
vì chia hết cho 12 chỉ có : 1 , 2 , 3 , 4 , 6 , 12
14 là : 1 , 2 , 7 , 14
vậy a lớn nhất là 2
2/
42 , 84 , 63 chia hết cho a
a = 3
vì chia hết cho 63 có : 1 , 3 , 9 , ...
42 : 1 , 3 , 6 , 7 , 2 , ....
vì vậy a lớn nhất = 3
3)1;4;9;16;25;36;...
4)1;2;3;4;7;11;18;...
5)1;2;5;9;16;27;...
6)0;3;8;15;24;35;...
7)2;5;10;17;26;...
8)1;3;6;10;15;21;28;...
a) Các số chia hết cho:
55 là 5,10,15,20,25,30,35,...5,10,15,20,25,30,35,...
66 là 6,12,18,24,30,36,..6,12,18,24,30,36,..
1010 là 10,20,30,40,...10,20,30,40,...
→→Vậy xx nhỏ nhất để chia hết cho 5,6,105,6,10 là 30
b) 24 : x, 36 : x , 160 : x và x lớn nhất => x = ƯCLN (24, 36, 160). Vậy x = 4.
Do 160+a chia hết cho a
=> 160+a-a chia hết cho a
=> 160 chia hết cho a (1)
Do 240-a chia hết cho a
=> 240-a+a chia hết cho a
=> 240 chia hết cho a (2)
Từ (1) và (2) => 160 chia hết cho a; 240 chia hết cho a
Mà a lớn nhất => a là ƯCLN(160;240)
Ta có 160=25.5
240=24.3.5
=> ƯCLN(160;240)= 24.5= 80
=> a=80
Ta có 360 ⋮ a; 135 ⋮ a; 450 ⋮ a và a là số lớn nhất có thể
=> \(a\inƯCLN\left(360,135,450\right)\in\left\{45\right\}\)
Vậy a = 45