Cho tổng A= 1/5+1/15+1/25+1/35+1/65+1/75+1/85 so sánh với 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/5 + 1/15 + 1/25 + 1/35 + 1/65 + 1/75 + 1/85
Tính tổng A và so sánh A với 1/2. Đề như thế à?
Bài 1:
\(A=\frac{1}{\left(1+2\right)}+\frac{1}{\left(1+2+3\right)}+\frac{1}{\left(1+2+3+4\right)}\)\(+\frac{1}{\left(1+2+3+4+5\right)}+...+\)\(\frac{1}{\left(1+2+3+...+10\right)}\)
\(A=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=\frac{9}{11}\)
Bài 2 :
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17 lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
\(\Rightarrow A< \frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}\)
\(=\frac{11}{17}\)
\(=\frac{1111}{1717}=B\)
Vậy \(A=B\)
1)\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}=2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=2.\left(\frac{1}{2}-\frac{1}{11}\right)=\frac{9}{11}\)
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
=> \(A<\frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}=\frac{11}{17}=\frac{1111}{1717}=B\)
Vậy A < B
15 + 25 + 35 + 45 + 55 + 65 + 75 + 85 + 95 =495 vì 495 < 500 nên 15 + 25 + 35 + 45 + 55 + 65 + 75 + 85 + 95 < 500
1/3+1/5+1/9+1/17+1/35+1/65+1/129+1/259
=(1/3+1/5)+(1/9+1/17)+(1/35+1/65)+(1/129+258)
< (1/3) . 2 + (1 / 8) . 2 +(1/32 .2)+(1/128).2 = 2/3 + 1/4 + 1/16+1/64=2/3+16/64+4/64+1/64=2/3+21/64=191/192 < 1
Vậy biểu thức nhỏ hơn 1
a) \(A=123\left(123+154\right)+77^2\)
\(A=123^2+\left(123.154\right)+77^2=\left(123+77\right)^2=200^2=400\)
b) \(B=3^{24}-\left(2^{47}+1\right)\left(9^6-1\right)\)
\(B=3^{24}-\left(3^{12}-1\right)\left(3^{12}+1\right)\)
\(B=3^{24}-3^{24}+1=1\)
c) \(C=85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
\(C=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)
\(C=\left(85+15\right)\left(85-15\right)+\left(75+25\right)\left(75-25\right)+\left(65+35\right)\left(65-35\right)\left(55+45\right)\left(55-45\right)\)
\(C=100\left(60+50+40+30+20+10\right)\)
\(C=100.210=21000\)
a)
\(\dfrac{1}{2}=0,5;\dfrac{3}{4}=0,75;\dfrac{7}{5}=1,4;\dfrac{9}{8}=1,125;\dfrac{26}{25}=1,04;\dfrac{120}{125}=0,96\)
b)
\(\dfrac{15}{25}=0,6;\dfrac{75}{25}=3;\dfrac{90}{300}=0,3;\dfrac{27}{36}=0,75;\dfrac{51}{85}=0,6\)
a,1/2=5/10;3/4=75/100;7/5=140/100;26/25=108/100;120/125=960/1000
b,15/25=60/100;75/25=300/100;90/300=3/10;27/36=3/4=75/100;
51/85=3/5=60/100;39/65=3/5=60/100