cho phuong trinh bâc 2; x2-5x-m-1=0 tim m đê phuong trinh co nghiem kep
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có phương trình
(m-1)x=m^2 -1 => (m-1)x-m^2+1 =0 (1)
Vậy phương trình (1) là phương trình bậc nhất (=) (m-1) khác 0.
(=) m khác 1
b, Ta có phương trình (1)
(m-1)x - m2 +1 = 0 => mx -x -m2 +1 = 0
+) Nếu m=1 => phương trình (1) có dạng 0x = 0
+) Nếu m khác 1 => Ptrinh (1) có nghiệm là x=(1-m2)/(m-1)
Vậy với m=1 ptinh có S=R
với m khác 1 ptrinh có S={(1-m2)/(m-1)}
Chúc bạn học tốt
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)
Với a = 4
Thay vào phương trình (t) ta được:
\(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)
\(\Leftrightarrow2x^2=2x^2-8\)
\(\Leftrightarrow0x=-8\)
Vậy phương trình vô nghiệm
b) Nếu x = -1
\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)
\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)
\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)
\(\Leftrightarrow-a^2+2a=-2-1+3\)
\(\Leftrightarrow a\left(2-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy a = {0;2}
NĂM MỚI VUI VẺ
1; Khi m=1 thì pt sẽ là \(\sqrt{x+1}=x+1\)
=>(x+1)^2=(x+1)
=>x(x+1)=0
=>x=0hoặc x=-1
2: \(\Leftrightarrow x+1=\left(x+m\right)^2\)
=>x^2+2mx+m^2-x-1=0
=>x^2+x(2m-1)+m^2-1=0
Δ=(2m-1)^2-4(m^2-1)
=4m^2-4m+1-4m^2+4
=-4m+5
Để pt có 2 nghiệm pb thì -4m+5>0
=>-4m>-5
=>m<5/4
Để pt có nghiệm kép thì 5-4m=0
=>m=5/4
Để pt vô nghiệm thì -4m+5<0
=>m>5/4
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
Để phương trình có nghiệm kép khi \(\Delta=0\)
hay \(x^2-5x-\left(m+1\right)=0\)
\(\Delta=25+4\left(m+1\right)=25+4m+4=29+4m=0\)
\(\Leftrightarrow m=-\frac{29}{4}\)Vậy nếu m = -29/4 thì phương trình có nghiệm kép