Cho ab,c là ba số thực dương thỏa mãn
Tính M=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM - GM:
\(P=3a+3b-1+\left[\left(a+1\right)+b+\dfrac{c^3}{b\left(a+1\right)}\right]\ge3a+3b-1+3c=3.5-1=14\).
Đẳng thức xảy ra khi a = 1; b = 2; c = 2.
Vậy Min P = 14 khi a = 1; b = 2; c = 2.
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
Ta có:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}=2b\)
Tương tự: \(\dfrac{ab}{c}+\dfrac{ca}{b}\ge2a\) ; \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2c\)
Cộng vế:
\(2P\ge2\left(a+b+c\right)\Rightarrow P\ge a+b+c=1\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Vì: a + 1 1 + b 2 = a + 1 − b 2 ( a + 1 ) 1 + b 2 ; 1 + b 2 ≥ 2 b n ê n a + 1 1 + b 2 ≥ a + 1 − b 2 ( a + 1 ) 2 b = a + 1 − a b + b 2
Tương tự: b + 1 1 + c 2 ≥ b + 1 − b c + c 2 ; c + 1 1 + a 2 ≥ c + 1 − c a + a 2 ⇒ M ≥ a + b + c + 3 − ( a + b + c ) + ( a b + b c + c a ) 2 = 3 + 3 − ( a b + b c + c a ) 2
Chứng minh được: 3 ( a b + b c + c a ) ≤ ( a + b + c ) 2 = 9 a c ⇒ 3 − ( a b + b c + c a ) 2 ≥ 0 ⇒ M ≥ 3
Dấu “=” xảy ra khi a = b = c = 1. Giá trị nhỏ nhất của M bằng 3.