cho a,b,c > 0
a+ b+c = 6
Chứng minh rằng:
\(\frac{a}{\sqrt{b^2+1}}+\frac{b}{\sqrt{c^2+1}}+\frac{c}{\sqrt{a^2+1}}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo BĐT AM-GM :
\(\sqrt{b}=\sqrt{b\cdot1}\le\frac{b+1}{2}\)
\(\Rightarrow\frac{a}{\sqrt{b}}\ge\frac{a}{\frac{b+1}{2}}=\frac{2a}{b+1}\)
Dấu "=" xảy ra \(\Leftrightarrow b=1\)
+ Tương tự ta cm đc :
\(\frac{b}{\sqrt{c}}\ge\frac{2b}{c+1}\). Dấu "=" xảy ra \(\Leftrightarrow c=1\)
\(\frac{c}{\sqrt{a}}\ge\frac{2c}{a+1}\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)
Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+}+\frac{c}{a+1}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)
or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)
Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)
Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)
Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)
Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)
Done!
Ta có:
\(\frac{2}{\sqrt{a}}+\frac{2}{\sqrt{b}}+\frac{2}{\sqrt{c}}=\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)+\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)+\left(\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}\right)\)
\(\ge\frac{\left(1+1\right)^2}{\sqrt{a}+\sqrt{b}}+\frac{\left(1+1\right)^2}{\sqrt{b}+\sqrt{c}}+\frac{\left(1+1\right)^2}{\sqrt{c}+\sqrt{a}}\)
\(=\frac{4}{\sqrt{a}+\sqrt{b}}+\frac{4}{\sqrt{b}+\sqrt{c}}+\frac{4}{\sqrt{c}+\sqrt{a}}\)
=> \(2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)\(\ge4\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
=> \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)\(\ge2\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}+\frac{1}{\sqrt{c}+\sqrt{a}}\right)\)
"=" xảy ra <=> a =b =c.
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(VT=\Sigma\frac{a}{\sqrt{b^3+1}}=\Sigma\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\)
\(\ge\Sigma\frac{a}{\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}}=\Sigma\frac{2a}{b^2+2}=\Sigma\left(a-\frac{ab^2}{b^2+2}\right)\)
\(=\Sigma\left(a-\frac{2ab^2}{b^2+b^2+4}\right)\ge\Sigma\left(a-\frac{2ab^2}{3\sqrt[3]{4b^4}}\right)\)\(=\Sigma\left[a-\frac{a\sqrt[3]{2b^2}}{3}\right]=\Sigma\left[a-\frac{a\sqrt[3]{2.b.b}}{3}\right]\)
\(\ge\Sigma\left[a-\frac{a\left(2+b+b\right)}{9}\right]\)\(=\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)
\(=\frac{7\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)\(\ge\frac{7\left(a+b+c\right)}{9}-\frac{2.\frac{\left(a+b+c\right)^2}{3}}{9}=2\)
Đẳng thức xảy ra khi a = b = c = 2
\(PT\Leftrightarrow\left(\left(3x+2\right)+\left(3x+3\right)\right)^2\left(3x+2\right)\left(3x+3\right)=105\)
Đặt 3x+2=a suy ra\(\left(2a+1\right)^2a\left(a+1\right)=105\)
Đến đây giải bt,tìm đc a =>x.(tick nha)
ap dung bat dang thuc amgm
\(\sqrt{b^3+1}\) \(=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{b+1+b^2-b+1}{2}\) \(=\frac{b^2+2}{2}\)
\(\Rightarrow\frac{a}{\sqrt{b^3+1}}\ge2.\frac{a}{b^2+2}\)
P=\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\left(\frac{a}{b^2+2}+\frac{b}{c^2+2}+\frac{c}{a^2+2}\right)\) \(\)
=\(2\left(\frac{a^2}{a\left(b^2+2\right)}+\frac{b^2}{b\left(c^2+2\right)}+\frac{c^2}{c\left(a^2+2\right)}\right)\)
tiep tuc ap dung bdt cauchy-swart dang phan thuc
\(\ge2\frac{\left(a+b+c\right)^2}{a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)}\)=
để ý và dùng cauchy ngược là oke
\(\sqrt{1-a^2}=\sqrt{\left(1-a\right)\left(1+a\right)}\le\frac{\left(1-a\right)+\left(1+a\right)}{2}=1\)
đề này có vấn đề thì phải, ai mò được cho mình xin cái dấu "=" nào
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\) chứ không như đề bài trên nhé.
Ta có:
\(\sqrt{b^3+1}=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\)
Vì \(b>0\)nên \(b+1>0\)và \(b^2-b+1\ge\frac{3}{4}>0\)nên áp dụng bất dẳng thức Cô-si cho 2 số dương, ta được:
\(\left(b+1\right)+\left(b^2-b+1\right)\ge2\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\)
\(\Leftrightarrow b^2+2\ge2\sqrt{b^3+1}\)
\(\Leftrightarrow\frac{b^2+2}{2}\ge\sqrt{b^3+1}\)
\(\Leftrightarrow\frac{2}{b^2+2}\le\frac{1}{\sqrt{b^3+1}}\)
\(\Leftrightarrow\frac{2a}{b^2+2}\le\frac{a}{\sqrt{b^3+1}}\left(1\right)\)
Chứng minh tương tự, ta được:
\(\frac{2b}{c^2+2}\le\frac{b}{\sqrt{c^3+1}}\left(2\right)\);
\(\frac{2c}{a^2+2}\le\frac{c}{\sqrt{a^3+1}}\left(3\right)\)
Từ (1), (2), (3), ta được:
\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}\left(4\right)\)
Ta có:
\(\frac{2a}{b^2+2}=\frac{a\left(b^2+2-b^2\right)}{b^2+2}=\frac{a\left(b^2+2\right)}{b^2+2}-\frac{ab^2}{b^2+2}=a-\frac{ab^2}{b^2+2}\)
Vì b dương nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(b^2+2\ge2b\sqrt{2}\)\(\Leftrightarrow\frac{1}{b^2+2}\le\frac{1}{2b\sqrt{2}}\)
\(\Leftrightarrow\frac{ab^2}{b^2+2}\le\frac{ab}{2\sqrt{2}}\)\(\Leftrightarrow-\frac{ab^2}{b^2+2}\ge\frac{-ab}{2\sqrt{2}}\)
\(\Leftrightarrow a-\frac{ab^2}{b^2+2}\ge a-\frac{ab}{2\sqrt{2}}\)\(\Leftrightarrow\frac{2a}{b^2+2}\ge a-\frac{ab}{2\sqrt{2}}\left(5\right)\)
Chứng minh tương tự, ta được:
\(\frac{2b}{c^2+2}\ge b-\frac{bc}{2\sqrt{2}}\left(6\right)\);
\(\frac{2c}{a^2+2}\ge c-\frac{ca}{2\sqrt{2}}\left(7\right)\)
Từ (5), (6), (7), ta được:
\(\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}\ge a-\frac{ab}{2\sqrt{2}}+b-\frac{bc}{2\sqrt{2}}+c-\frac{ca}{2\sqrt{2}}\left(8\right)\)