Cho ABD có B D 61,1 , 42,8 0 0 . Hỏi góc A khoảng bao nhiêu độ? (số đo góc
làm tròn đến hàng đơn vị).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overrightarrow {BC} = \left( { - 7;1} \right),\overrightarrow {BA} = \left( {3;3} \right)\)
\(\cos \widehat {ABC} = \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \frac{{\left( { - 7} \right).3 + 1.3}}{{\sqrt {{{\left( { - 7} \right)}^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} = - \frac{3}{5} \Rightarrow \widehat {ABC} \approx {126^o}\)
b) Ta có: \(\overrightarrow {BC} = \left( { - 7;1} \right),\overrightarrow {BA} = \left( {3;3} \right),\overrightarrow {AC} = \left( { - 10; - 2} \right)\)
Suy ra: \(\begin{array}{l}AB = \left| {\overrightarrow {BA} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \\AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt {104} \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}} = \sqrt {50} \end{array}\)
Vậy chu vi tam giác ABC là: \({P_{ABC}} = 2\sqrt {26} + 8\sqrt 2 \)
c) Để diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM thì M phải là trung điểm BC.
Vậy tọa độ điểm M là: \(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = \frac{{ - 9}}{2}\\\frac{{{y_B} + {y_C}}}{2} = \frac{3}{2}\end{array} \right.\). Vậy \(M\left( {\frac{{ - 9}}{2};\frac{3}{2}} \right)\)
Độ cao của máy bay là CD, độ dài AB = 80m
Gọi BC = x (x > 0) => AC = 80 + x
Xét tam giác BDC vuông tại C có CD = x . tan 55 0
Xét tam giác ADC vuông tại C có CD = (80 + x). tan 44 0
Suy ra x . tan 55 0 = (80 + x). tan 44 0
=> x ≈ 113,96m
=> CD = 113,96. tan 55 0 ≈ 162,75m
Vậy độ cao của máy bay so với mặt đất là 162,75m
B: Là vị trí thuyền hiện tại
D: là vị trí thuyền sau 10 phút
AC: chiều cao ngọn hải đăng = 63 m
Xét tg vuông ABC
\(\tan\widehat{ABC}=\tan19^o=\frac{AC}{AB}=\frac{63}{AB}\Rightarrow AB=\frac{63}{\tan19^o}\)
Xét tg vuông ACD có
\(\tan\widehat{ADC}=\tan54^o=\frac{AC}{AD}=\frac{63}{AD}\Rightarrow AD=\frac{63}{\tan54^o}\)
Quãng đường thuyền đi được sau 10' là
\(BD=AB-AD=\frac{63}{\tan19^o}-\frac{63}{\tan54^o}\)
a: Xét ΔABC và ΔDBC có
BA=BD
CB chung
CA=CD
Do đó: ΔABC=ΔDBC
=>\(\widehat{ABC}=\widehat{DBC}=60^0;\widehat{ACB}=\widehat{DCB}=50^0\)
\(\widehat{ABD}=\widehat{ABC}+\widehat{DBC}=60^0+60^0=120^0\)
\(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}=50^0+50^0=100^0\)
b: Xét (B) có
\(\widehat{ABD}\) là góc ở tâm chắn cung AD
=>\(sđ\stackrel\frown{AD}=\widehat{ABD}=120^0\)
tổng các góc trong tứ giác là:
A+B+C+D=360
mà A=3x;B=4x;C=x;D=2x)
suy ra 3x+4x+x+2x=360
x(3+4+1+2)=360
10x =360
x =360:10
x =36
Chiều cao ngọn hải đăng là cạnh góc vuông đối diện với góc 0 ° 42 ' , khoảng cách từ tàu đến chân ngọn hải đăng là cạnh kề với góc nhọn.
Vậy khoảng cách từ tàu đến chân ngọn hải đăng là:
80.cotg 0 ° 42 ' ≈ 6547,76 (feet) ≈ 1,24 (hải lí)
Gọi số người là x
Theo đề, ta có: \(x-7\in BC\left(12;18;30\right)\)
hay x=367