cho tam giác abc có ab=ac. gọi d là trung điểm bc chứng minh
a)tam giác adb=tam giác adc
b)ad vuông góc với bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (Xem lại đề) xửa : t/giác ADB = t/giác ADC
Xét t/giác ADB và t/giác ADC
có: AB = AC (gt)
AD : chung
BD = DC (gt)
=> t/giác ADB = t/giác ADC (c.c.c)
b) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{BAD}=\widehat{DAC}\)(2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Ta có: t/giác ADB = t/giác ADC (cmt)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc t/ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(kề bù)
=> \(\widehat{ADB}=\widehat{ADC}=90^0\)
=> AD \(\perp\)BD
a)Xét tam giác ABD và tam giác ACD có:
AB=AC (gt)
BD=DC (vì D là trung điểm của BC)
AD là cạnh chung
=>tam giác ABD =tam giác ACD (c.c.c)
b)Xét tam giác BID và tam giác CID có:
BD=DC (vì D là trung điểm của BC)
ADB=ADC=90 độ (vì D là trung điểm của BC)
ID là cạnh chung
=>tam giác BID=tam giác CID (c.g.c)
=>BI=IC (2 cạnh tương ứng)
c) Câu c mình không hiểu đề cho lắm ý bạn là góc BAC=2 làn góc IBC
a. Ta có AB = AC ( gt)
=> Tam giác ABC cân tại A
Nối AD ta được đường trung trực AD
=> AD cũng là đường cao ( tính chất của tam giác cân)
Vì tam giác ABC cân nên góc BAD = góc CAD
Xét tam giác ABD và tam giác ACD có:
AD chung
góc BAD = góc CAD (cmt)
AB=AC (gt)
=> tam giac ABD = tam giác ACD ( c.g.c)
b. Xét tam giác BID và tam giác CID có:
ID chung
BD =DC ( gt)
góc IDB = góc IDC = 900
=> tam giác BID= tam giác CID ( 2 cạnh góc vuông)
=> IB =IC ( 2 cạnh tương ứng )
c. chưa nghĩ ra :))
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Tam giác ABO và tam giác AEO có:
Góc AOB = góc AOE (=90 độ)
Góc BAO = góc EAO (AO là phân giác góc BAE)
Cạnh AO chung
=> tam giác ABO = tam giác AEO (g-c-g) (1)
b) Từ (1) => AB = AE => tam giác BAE cân tại A (2)
c) Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE
=> AD là đường trung trực của BE
d) Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.
Gọi H là giao điểm của EM và AB => EH đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE
=> EM vuông góc AB
mà BC vuông góc AB (gt)
=> EM // BC
a. Xét 2 TG AMC và DMB, ta có:
AM=DM(M là tđiểm của AD); BM=CM(Mlaf tđiểm BC); BMD=AMC(2 góc Đối đỉnh)
=>TG AMC=TG DMB(c.g.c)
b. Xét 2 TG AMB và CMD, ta có:
AM=DM(gt);BM=CM(gt); AMB=CMD(đđ)
=>TG AMB=TG CMD(c.g.c)
=>BAM=CDM(2 góc tương ứng)
mà chúng lại ở vị trí slt=>AB//CD.
c. sory!!! I don't know
ai giúp mình nhanh với ạ cần gấp
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao