cmr
A=1/2!+2/3!+...+2013/2014!<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
\(B=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+....+\frac{1}{2014}\)
\(=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(1+\frac{1}{2014}\right)+1\)
\(=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(=2015\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}+\frac{1}{2015}\right)\)
\(B=\frac{2014}{1}+\frac{2013}{2}+......+\frac{1}{2014}\)
\(B=\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)+1\)
\(B=\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+\frac{2015}{2015}\)
\(B=2015\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
A<1/1.2+1/2.3+......+1/2013.2014
=1-1/2+1/2-1/3+.........+1/2013-1/2014
A<1-1/2014<1
=>A<1 (đpcm)