K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

20 tháng 11 2019

Các cụ cho con bỏ câu này

20 tháng 11 2019

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

4 tháng 1 2016

\(7^{4n}-1=\left(7^4\right)^n-1=\left(2401\right)^n-1=\left(....1\right)-1=...0\Rightarrow7^{4n}-1\)chia hết cho n(vì có tận cùng là 0)

 

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

11 tháng 9 2016

a,  n=3k => n chia hết cho 3 => đpcm

n=3k+1 => n+5 chia hết cho 3 => đpcm

n=3k+2 => n+40 chia hết cho3 => đpcm

vậy ....

b, c tương tự

7 tháng 10 2015

mik cũng chưa học đến 

bn thông cảm

7 tháng 10 2015

ta có

7x chia 3 dư 1

=>2.7x chia 3 dư 2

=>2.7x chia 3 không dư

16 tháng 11 2019

a)

=mn(m-n)(m+n)

Nếu 1 trg 2 số chia hết cho 3=> đpcm

Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)

Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)

Vậy mn(m^2-n^2) chia hết cho 3

b) Có 2005^2006 lẻ; 2006^2005 chẵn

Nếu n lẻ=> n+2005^2006 chẵn

Nếu n chẵn => n+2006^2005 chẵn

=> đều chia hết cho 2

=> đpcm.