K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ

25 tháng 6 2020

tự kẻ hình nha

a) xét tam giác ABH và tam giác ACH có

AB=AC(gt)

ABC=ACB(gt)

AHB=AHC(=90 độ)

=> tam giác ABH= tam giác ACH( ch-gnh)

b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)

=>HB=HC=BC/2=12/2=6cm

ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2

=> AH=8 (AH>0)

d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến 

mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng

c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC

vì G thuộc AH=> GB=GC

xét tam giác ABG và tam giác ACG có

AB=AC(gt)

GB=GC( cmt)

AG chung

=> tam giác ABG= tam giác ACG(ccc)

chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu

3 tháng 5 2021

a) △ABC cân tại A có AH là đường cao

⇒ AH là đường trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)

△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

b) △ABC có AH là đường trung tuyến

G là trọng tâm

\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng

c) △ABC cân tại A có AH là đường cao

⇒ AH là đường phân giác

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

△ABG và △ACG có:

\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)

\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

DO đó: ΔABH=ΔACH

b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có 

ED chung

HD=CD

Do đó: ΔEDH=ΔEDC

11 tháng 5 2022

có câu c ko bạn 

 

a: ΔABC cân tại A 

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC

b: BH=CH=6/2=3cm

AH=căn 5^2-3^2=4cm

c: Xét ΔABC có

AH là trung tuyến

G là trọng tâm

=>A,G,H thẳng hàng

d: Xét ΔABG và ΔACG có

AB=AC

góc BAG=góc CAG

AG chung

=>ΔABG=ΔACG

=>góc ABG=góc ACG

b: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh huyền BC

nên AH là đường trung tuyến ứng với cạnh BC

mà AG là đường trung tuyến ứng với cạnh BC

và AG,AH có điểm chung là A

nên A,G,H thẳng hàng

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)