Cho tam giác ABC cân tại A.Đường cao AH(AH vuông góc vs BC)
Biết AB=10cm,BC=12cm
a)Chứng minh tam giác ABH = tam giác ACH
b)Tính độ dài đoạn thẳng AH
c)Gọi G là trọng tâm của tam giác ABC
Chứng minh tam giác ABG =tam giác ACG
d)Chứng minh A,G,H thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) △ABC cân tại A có AH là đường cao
⇒ AH là đường trung tuyến
\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)
△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
b) △ABC có AH là đường trung tuyến
G là trọng tâm
\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng
c) △ABC cân tại A có AH là đường cao
⇒ AH là đường phân giác
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
△ABG và △ACG có:
\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)
\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: Xét ΔEDH vuông tại D và ΔEDC vuông tại D có
ED chung
HD=CD
Do đó: ΔEDH=ΔEDC
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC
b: BH=CH=6/2=3cm
AH=căn 5^2-3^2=4cm
c: Xét ΔABC có
AH là trung tuyến
G là trọng tâm
=>A,G,H thẳng hàng
d: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
=>ΔABG=ΔACG
=>góc ABG=góc ACG
b: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh huyền BC
nên AH là đường trung tuyến ứng với cạnh BC
mà AG là đường trung tuyến ứng với cạnh BC
và AG,AH có điểm chung là A
nên A,G,H thẳng hàng
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ
tự kẻ hình nha
a) xét tam giác ABH và tam giác ACH có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác ABH= tam giác ACH( ch-gnh)
b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)
=>HB=HC=BC/2=12/2=6cm
ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2
=> AH=8 (AH>0)
d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến
mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng
c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC
vì G thuộc AH=> GB=GC
xét tam giác ABG và tam giác ACG có
AB=AC(gt)
GB=GC( cmt)
AG chung
=> tam giác ABG= tam giác ACG(ccc)
chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu