( a-1)x +2a +1 < 0 với a>1
(2a+1)x -1 -a >0 với a<-1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?
3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1
Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)
Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.
4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x
5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
vì \(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x
a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)
Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)
Mà a(a+1)\(⋮\)2 (2)
Từ (1)(2) suy ra a(a+1)(a+2)⋮6
=>a2(a+1)+2a(a+1)⋮6
b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a
Vì -5 chia hết 5
=>-5a chia hết 5
c)x2+2x+2=x2+2x+1+1=(x+1)2+1
Vì (x+1)2≥0
<=>(x+1)2+1>0
d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)
e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1
Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)
rồi nhé
a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)
\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)
Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)
Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)
mà 2 và 3 là hai số nguyên tố cùng nhau(3)
nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)
hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)
b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\forall a\in Z\)
hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)
c) Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)
hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)
d) Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)
hay \(x^2-x+1>0\forall x\in Z\)(đpcm)
e) Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)
hay \(-x^2+4x-5< 0\forall x\in Z\)
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
mik lm mẫu câu a nhé
a, \(=\left(a+1\right).\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)tích 3 stn liên tiếp chia hết cho 6
a.
\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)
\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow x=1\)
b.
ĐKXĐ: \(x\ge a\)
Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)
Pt trở thành:
\(2\left(t^2+a\right)-5at+2a^2-2a=0\)
\(\Leftrightarrow2t^2-5at+2a^2=0\)
\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)
\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
Tham khảo:
\(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\Rightarrow ax=\sqrt{\dfrac{2a}{b}-1}\)
\(\Rightarrow\left\{{}\begin{matrix}1+ax=\dfrac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}\\1-ax=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1-ax}{1+ax}=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2\left(b-a\right)}\)
Lại có:
\(\dfrac{1+bx}{1-bx}=\dfrac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\dfrac{a^2-\left(2ab-b^2\right)}{\left(a-\sqrt{2ab-b^2}\right)^2}=\dfrac{\left(a-b\right)^2}{\left(a-\sqrt{2ab-b^2}\right)^2}\)
\(\Rightarrow\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{b-a}{a-\sqrt{2ab-b^2}}\)
\(\Rightarrow A=\dfrac{1-ax}{1+ax}.\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2a-2\sqrt{2ab-b^2}}=\dfrac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1\)