Cho tam giác ABC vuông tại A , kẻ trung tuyến AD ( D thuộc BC ) . Lấy điểm E đối xứng với A qua D . Tìm thêm điều kiện của tam giác ABC để tứ giác ABEC làhình vuông.
A.Tam giác ABC cân tại A .
B.Tam giácABC có góc B bằng 60 độ .
C.Tam giác ABC có góc B bằng 30 độ .
D.Tam giác ABC có góc B bằng 40độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chứng minh ABEC là hình bình hành mà có Â = 900 Þ tứ giác ABEC là hình chữ nhật.
b) Áp dụng định lý về đường trung bình của tam giác △ A D C ⇒ F G = 1 2 A D = 2 c m
c) Để tứ giác ABEC là hình vuông thì AB = AC ÞDABC phải là tam giác vuông cân tại A.
a) Ta có AD = 1 2 B C = 8 2 = 4 c m
Xét DADC có GF là đường trung bình
⇒ G F = 1 2 A D = 4 2 = 2 c m
b) Chứng minh ADCE là hình thoi. Để ADCE là hình vuông thì điều kiện cần và đủ là E C D ^ = 90 0 ⇔ C 1 ^ = C 2 ^ = 45 0
Û DABC vuông tại A.
a) Xét tứ giác ABDC có
H là trung điểm của đường chéo BC(AH là đường trung tuyến ứng với cạnh BC trong ΔABC)
H là trung điểm của đường chéo AD(A và D đối xứng nhau qua H)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: ΔABC cân tại A(gt)
mà AH là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AH là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AH\perp BC\)
Ta có: AH\(\perp\)BC(cmt)
AH\(\perp\)AE(gt)
Do đó: BC//AE(Định lí 1 từ vuông góc tới song song)
hay HC//AE
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
HC//AE(cmt)
Do đó: C là trung điểm của DE(Định lí 1 đường trung bình của tam giác)
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
C là trung điểm của DE(cmt)
Do đó: HC là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow HC=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(HC=\dfrac{BC}{2}\)(H là trung điểm của BC)
nên AE=BC
Xét tứ giác ABCE có
AE//BC(cmt)
AE=BC(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b: Xét tứ giác ADBK có
E là trung điểm của AB
E là trung điểm của DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến ứng với cạnh huyền BC
nên \(AD=BD=CD=\dfrac{BC}{2}\)
Xét tứ giác ADBK có
E là trung điểm của đường chéo AB
E là trung điểm của đường chéo DK
Do đó: ADBK là hình bình hành
mà DA=DB
nên ADBK là hình thoi
Suy ra: K đối xứng với D qua AB
b: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của BC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//AC và \(DE=\dfrac{AC}{2}\)
mà \(DE=\dfrac{DK}{2}\)
nên DK//AC và DK=AC
hay AKDC là hình bình hành
Chọn A