cho tam giác ABC cân tại A. Từ một điểm E bất kỳ trên cạnh AB, kẻ một đượng thẳng song song với đáy BC, đường thăng này cắt AC tại F. Chứng minh rằng:
a) \(BF>\frac{EF+BC}{2}\)
b) \(BE>\frac{BC-EF}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh BDEF là hình bình hành Þ ED= BF = AE Þ DAED cân ở E.
b) Ta có B A D ^ = D A C ^ (vì cùng bằng A D E ^ ) Þ AD là phân giác Â
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
b: \(BC=2\cdot EF=2\cdot5=10\left(cm\right)\)
a) Xét tam giác ABC có:
M là trung điểm BC
ME//AC
=> E là trung điểm AB
Xét tam giác ABC có:
M là trung điểm BC
MF//AB
=> F là trung điểm AC
Xét tam giác ABC có:
E là trung điểm AB(cmt)
F là trung điểm AC(cmt)
=> EF là đường trung bình
c) Ta có: EF là đường trung bình
\(\Rightarrow BC=2EF=2.5=10\left(cm\right)\)
a: Xét tứ giác BFED có
FE//BD
DE//BF
Do đó: BFED là hình bình hành
Suy ra: DE=BF
mà AE=BF
nên ED=EA
hay ΔAED cân tại E