Xác định parabol (P) y=ax^2+2x+c (a khác 0) biết rằng (P) có đỉnh S( 1;5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-2}{2a}=-1\\-\dfrac{4-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\4-4c=-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{2a}=4\\-\dfrac{64-4ac}{4a}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\-64+4c=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=31\end{matrix}\right.\)
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
Đề bài thiếu, không thể xác định chính xác (P) khi chỉ biết đỉnh
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
Đồ thị hàm số \(y = a{x^2} + bx + c\) đi qua điểm A(8; 0) nên:
\(a{.8^2} + b.8 + c = 0 \Leftrightarrow 64a + 8b + c = 0\)
Đồ thị hàm số \(y = a{x^2} + bx + c\) có đỉnh là I(6;-12):
\(\frac{{ - b}}{{2a}} = 6 \Leftrightarrow - b = 12a \Leftrightarrow 12a + b = 0\)
\(a{.6^2} + 6b + c = - 12 \Leftrightarrow 36a + 6b + c = - 12\)
Từ 3 phương trình trên ta có: \(a = 3;b = - 36,c = 96\)
=> Hàm số cần tìm là \(y = 3{x^2} - 36x + 96\)
Ai giúp mình với ạ
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{2}{2a}=1\\-\dfrac{2^2-4ac}{4a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\4+4c=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\c=4\end{matrix}\right.\)