\(\frac{1}{3}\)x+\(\frac{2}{5}\)(x-1)=0
nêu luôn cách giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)
\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)
\(\Leftrightarrow6x+12< 10x+20+15\)
\(\Leftrightarrow6x-10x< 20+15-12\)
\(\Leftrightarrow-4x< 23\)
\(\Leftrightarrow x>-\frac{23}{4}\)
Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)
\(\frac{x+2}{4}-x< \frac{1}{3}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow3x+6-12x< 4\)
\(\Leftrightarrow3x-12x< 4-6\)
\(\Leftrightarrow-9x< -2\)
\(\Leftrightarrow x>\frac{2}{9}\)
Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)
\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))
Xét hai trường hợp
1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)
2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)
4/7x-2/3=1/5
4/7x=1/5+2/3
4/7x=3/15+10/15
4/7x=13/15
x=13/15:4/7
x=91/60
vay x=91/60
\(\frac{3-x}{5}=\frac{1}{4}\)
\(\Rightarrow4.\left(3-x\right)=5\)
\(\Rightarrow12-4x=5\)
\(\Rightarrow4x=12-5\)
\(\Rightarrow4x=7\)
\(\Rightarrow x=\frac{7}{4}\)
Vậy x = \(\frac{7}{4}\)
Ta có: \(\frac{x-18}{2018}=\frac{x-17}{2017}\)
\(\Rightarrow\left(x-18\right).2017=\left(x-17\right).2018\)( tính chất của 2 tỉ số bằng nhau )
\(2017x-2017.18=2018x-2018.17\)
\(2018.17-2017.18=2018x-2017x\)
\(\left(2017+1\right).17-2017.\left(17+1\right)=x\)
\(2017.17+17-2017.17-2017=x\)
\(x=-2000\)
Vậy \(x=-2000\)
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x-1}{101}+\frac{x-2}{102}\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)=\left(\frac{x-1}{101}+1\right)+\left(\frac{x-2}{102}+1\right)\) ( cộng cả 2 vế thêm 2 )
\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)
\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\right)=0\)
Ta có: \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\ne0\)
\(\Rightarrow x+100=0\)
\(x=-100\)
Vậy \(x=-100\)
a, \(\frac{x-18}{2018}=\frac{x-17}{2017}\)
=>\(\frac{x-18}{2018}+1=\frac{x-17}{2017}+1\)
=>\(\frac{x-18+2018}{2018}=\frac{x-17+2017}{2017}\)
=>\(\frac{x+2000}{2018}=\frac{x+2000}{2017}\)
=>\(\frac{x+2000}{2018}-\frac{x+2000}{2017}=0\)
=>\(\left(x+2000\right)\left(\frac{1}{2018}-\frac{1}{2017}\right)=0\)
Mà \(\frac{1}{2018}-\frac{1}{2017}\ne0\)
=>x+2000=0 => x=-2000
b,
=>\(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1\)
=>\(\frac{x+1+99}{99}+\frac{x+2+98}{98}=\frac{x-1+101}{101}+\frac{x-2+102}{102}\)
=>\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)
=>\(\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)
=>\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\ne0\)
=>x+100=0 => x=-100
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=2k\); \(y=5k\)
Ta có : \(2k.5k=90\Rightarrow10k^2=90\Rightarrow k^2=9\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)
Với \(k=3\Rightarrow x=2.3=6\); \(y=5.3=15\)
Với \(k=-3\Rightarrow x=2.-3=-6\); \(y=5.-3=-15\)
Vậy ....
Đặt :
\(\frac{x}{2}=\frac{y}{5}=k\Leftrightarrow x=2k;y=5k\)
Thay \(x=2k;y=5k\) vào \(x.y=90\) Ta có :
\(2k.5k=90\)
\(\Leftrightarrow10.k^2=90\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=3\)
+) \(k=3\Leftrightarrow\hept{\begin{cases}x=2k=2.3=6\\y=5k=5.3=15\end{cases}}\)
Vậy .................
\(\Leftrightarrow\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=\frac{17}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{2}{5}x=\frac{17}{4}+\frac{3}{8}\)(Bạn tự quy đồng chỗ này)
\(\Leftrightarrow\frac{1}{10}x=\frac{37}{8}\)
\(\Leftrightarrow x=\frac{185}{4}\)
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}