Các bạn giúp mình bài này với
cho:a/b=b/3c=c/9a.CMR:a=b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)
a: M nằm giữa A và B
=>AM+MB=AB
=>MB=3cm=AM
=>M là trung điểm của AB
b: Số đoạn thẳng tạo ra là:
\(C^2_{22}=231\left(đoạn\right)\)
a,1/5+4/11+4/5+7/11
=(1/5+4/5)+(4/11+7/11)
=1+1
=2
Chọn B
1367.54+1367.45+1367
=1367.(54+45+1)
=1367.100
=136700
Cần thêm điều kiện a,b,c khác 0
Từ giả thiết ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right).\frac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Suy ra a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Mặt khác, 23 , 5 , 2017 là các số mũ lẻ nên \(a^{23}+b^{23}=\left(a+b\right).A=0.A=0\)( Vì a + b = 0 - chứng minh trên)
Suy ra P = 0
Tương tự với các trường hợp còn lại , ta cũng có kết quả tương tự.
???????????????????câu này khó quá????????????????????????????
ta có : \(\frac{a}{b}=\frac{c}{9a}\Rightarrow9.a^2=bc\Rightarrow\frac{a^2}{b}=\frac{c}{9}\Rightarrow\frac{a}{b}a=\frac{c}{9}\Rightarrow\frac{a}{b}=\frac{c}{9}\div a=\frac{9a}{c}\Rightarrow\frac{b}{a}=\frac{c}{9a}\leftrightarrow\frac{a}{b}=\frac{b}{a}\) => a=b