Tìm m biết A(x)= 2x^2 -mx =-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
A=2x4+ mx3 -mx -2
=(2x4-2)+ (mx3-mx)
=2(x4-1)+ mx( x2-1)
=2( x2-1 ) ( x2+1) +mx( x2-1)
=( x2-1 ) [ 2 (x2+1)+ mx ] chia hết cho x2-1
Hay A chia hết cho B. Vậy với mọi GT của m, thì A luôn chia hết cho B.
(Thử nhé: nếu m=3 thì kết quả là 2x2+3x+2 ; nếu x=4 thì kết quả là 2x2+4x+2.
Thấy gì đặc biệt không nè ? Nếu m=q thì sẽ luôn có kết quả là 2x2+ q.x+2)
Học tốt nhé :)
a, \(\sqrt{2x^2-2x+m}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau
TH1: \(x_1\ge x_2\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)
\(\Leftrightarrow-4\le m\le5\)
TH2: \(x_1\ge-1>x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)
\(\Rightarrow\) vô nghiệm
Vậy \(-4\le m\le5\)
a/ \(y'=3x^2+6x+m>0\)
\(y'>0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\9-3m< 0\end{matrix}\right.\Leftrightarrow m>3\)
b/ \(y'=\dfrac{\left(x-m\right)'\left(x+1\right)-\left(x-m\right)\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{x+1-x+m}{\left(x+1\right)^2}=\dfrac{1+m}{\left(x+1\right)^2}>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\1+m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\m>-1\end{matrix}\right.\Leftrightarrow m>-1\)
c/ \(y'=\dfrac{\left(x+2\right)'\left(x-m\right)-\left(x-m\right)'\left(x+2\right)}{\left(x-m\right)^2}=\dfrac{x-m-x-2}{\left(x-m\right)^2}=\dfrac{-m-2}{\left(x-m\right)^2}\)
\(y'>0\Leftrightarrow\left\{{}\begin{matrix}x\ne m\\-m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne x\\m< -2\end{matrix}\right.\)
d/ \(y'=6x^2-2mx+3>0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6>0\\m^2-18< 0\end{matrix}\right.\Leftrightarrow m< \left|\sqrt{18}\right|\)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
Lời giải:
a. Đặt $f(x)=x+\sqrt{2x^2+1}$
$f'(x)=1+\frac{2x}{\sqrt{2x^2+1}}=0\Leftrightarrow x=\frac{-1}{\sqrt{2}}$
Lập BBT ta thấy:
$f_{\min}=f(\frac{-1}{\sqrt{2}})=\frac{\sqrt{2}}{2}$
\(f(x)\to +\infty \) khi \(x\to +\infty; x\to -\infty \)
Do đó $x+\sqrt{2x^2+1}=m$ có nghiệm khi $m\geq \frac{\sqrt{2}}{2}$
b. TXĐ: $x\in [3;+\infty)$
BPT $\Leftrightarrow m(x-1)\leq \sqrt{x-3}+1$
$\Leftrightarrow m\leq \frac{\sqrt{x-3}+1}{x-1}$
Xét $f(x)=\frac{\sqrt{x-3}+1}{x-1}$
$f'(x)=0\Leftrightarrow x=7-2\sqrt{3}$
Lập BBT ta thấy $f_{\max}=f(7-2\sqrt{3})=\frac{1+\sqrt{3}}{4}$
Để BPT có nghiệm thì $m\leq \frac{1+\sqrt{3}}{4}$
ta có:
-2x2 + mx - 7m + 3 = 0 tại x = -1
thay x = - 1 vào đa thức, ta được:
-2 * (-1)2 + m * (-1) - 7m + 3 = 0
=> -2 - 1m - 7m + 3 = 0
=> -2 - 8m + 3 = 0
=> -8m = 0 - 3 + 2
=> -8m = -1
=> m = -1 / -8
=> m = 1/8
vậy m = 1/8
Q(x) có ngiệm là -1
=>-2.(-1)2+m.(-1)-7m+3=0
-2-m-7m+3=0
-m-7m-2+3=0
-8m+1=0
-8m =-1
m =1/8
Vậy với m=1/8 thì Q(x) có ngiệm là -1