Giúp Mình bài này với nha:
Tính hợp lý:
\(S=\frac{4}{5}+\frac{44}{55}+\frac{116}{117}+\frac{220}{221}+\frac{356}{357}=?\)
Mọi ngưới giúp mình nhanh đc ko. Đang cần rất gấp. Mai bọn mình kiểm tra 1 tiết rồi. Ai nhanh và đúng mk tick nha. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{5}+\frac{44}{55}+\frac{116}{117}+\frac{220}{221}+\frac{356}{357}\)
\(=\left(1-\frac{1}{5}\right)+\left(1-\frac{1}{55}\right)+\left(1-\frac{1}{117}\right)+\left(1-\frac{1}{221}\right)+\left(1-\frac{1}{357}\right)\)
\(=1.5+\left(\frac{1}{5}+\frac{1}{55}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}\right)\)
\(=5+\left(\frac{1}{1.5}+\frac{1}{5.11}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}\right)\)
\(=5+1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(=6+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{17}-\frac{1}{17}\right)+\left(\frac{1}{9}-\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{4158}{693}+\left(\frac{77}{693}-\frac{63}{693}-\frac{33}{693}\right)\)
\(=\frac{4158}{693}-\frac{19}{693}\)
\(=\frac{4139}{693}=5\frac{674}{693}\)
Có: Đề \(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)\(=\frac{\left(abz-abz\right)+\left(bcx-bcx\right)+\left(acy-acy\right)}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Leftrightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}}\RightarrowĐpcm\)
\(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)=>\(\frac{a\left(bz-cy\right)}{a^2}\)=\(\frac{b\left(cx-az\right)}{b^2}\)=\(\frac{c\left(ay-bx\right)}{c^2}\)
=>\(\frac{abz-acy}{a^2}\)=\(\frac{bcx-abz}{b^2}\)\(\frac{cay-bcx}{c^2}\)=\(\frac{abz-acy+bcx-abz+cay-bcx}{a^2+b^2+c^2}\)= 0
=>\(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)= 0
=> bz - cy = cx - az = ay - bx = 0
+) bz - cy = 0 => bz = cy => y/b = z/c
+) cx - az = 0 => cx = az => x/a = z/c
=> x/a = y/b = z/c
\(8\frac{4}{17}-\left(2\frac{5}{9}+3\frac{4}{17}\right)=\frac{140}{17}-\left(\frac{23}{9}+\frac{55}{17}\right)=\frac{140}{17}-\frac{886}{153}=\frac{22}{9}=2,444444444444\)