Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
29 . ( 85 -47) + 85. ( 47-29 )
=29.38+85.18
=1102+1530
=1632
2,7 . 10,5 - 7,3 . 10,5 - 7,3 . 15 + 2,7 . 15
=(2,7+7,3).10,5-(2,7+7,3).15
=10.10,5-10.15
=105-150
=-45
Bạn viết thêm số thứ 3 ở đầu dãy thì mới biết quy luật của dãy để tính chứ. Viết 2 số thế kia ai tính được :D
Bạn chỉ viết 2 số ở đầu dãy thì ko thể biết được quy luật của dãy. Bạn cần cho thêm 1 số nữa mới giải được chi tiết nhé!
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
\(\frac{4}{5}+\frac{44}{55}+\frac{116}{117}+\frac{220}{221}+\frac{356}{357}\)
\(=\left(1-\frac{1}{5}\right)+\left(1-\frac{1}{55}\right)+\left(1-\frac{1}{117}\right)+\left(1-\frac{1}{221}\right)+\left(1-\frac{1}{357}\right)\)
\(=1.5+\left(\frac{1}{5}+\frac{1}{55}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}\right)\)
\(=5+\left(\frac{1}{1.5}+\frac{1}{5.11}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}\right)\)
\(=5+1-\frac{1}{5}+\frac{1}{5}-\frac{1}{11}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(=6+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{17}-\frac{1}{17}\right)+\left(\frac{1}{9}-\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{4158}{693}+\left(\frac{77}{693}-\frac{63}{693}-\frac{33}{693}\right)\)
\(=\frac{4158}{693}-\frac{19}{693}\)
\(=\frac{4139}{693}=5\frac{674}{693}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)
a, \(\frac{3}{8}+\frac{11}{13}-\frac{9}{13}\)
=\(\frac{3}{8}+\frac{2}{13}\)
=\(\frac{55}{104}.\)
b, \(\frac{2}{7}.\left(\frac{5}{9}+\frac{4}{9}\right)+\frac{2}{7}\)
=\(\frac{2}{7}.\frac{9}{9}+\frac{2}{7}\)
=\(\frac{2}{7}+\frac{2}{7}\)
=\(\frac{4}{7}\)
c, \(\frac{3}{11}.\left(\frac{3}{5}-\frac{5}{3}\right)-\frac{3}{10}.\left(\frac{1}{3}-\frac{2}{5}\right)\)
=\(\frac{3}{11}.-\frac{16}{15}-\frac{3}{10}.-\frac{1}{15}\)
=\(-\frac{16}{55}--\frac{1}{50}\)
=\(-\frac{149}{550}.\)
d, \(\frac{-3}{4}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(-\frac{33}{92}+\frac{93}{391}-\frac{57}{391}\)
=\(-\frac{417}{1564}\)
e, \(\frac{3}{17}.\frac{11}{23}+\frac{3}{23}.\frac{31}{17}-\frac{3}{17}.\frac{19}{23}\)
=\(\frac{33}{391}+\frac{93}{391}--\frac{254}{391}\)
=\(\frac{380}{391}.\)
g, \(\frac{3}{7}.\frac{-5}{12}+\frac{11}{17}:\frac{5}{-12}\)
=\(-\frac{5}{28}+-\frac{132}{85}\)
= \(-1.731512605.\)
k cho mình nha làm mỏi tay quá ,.....................kết bạn với mình nha.......................