Cho hình bình hành ABCD. Trên tia BD lấy E, gọi F là điểm đối xứng của C qua E. Qua F vẽ Fx // AD cắt AB tại I , vẽ Fy // AB cắt AD tại K. C/m I,K,E thẳng hàng.
Mấy bạn không cần vẽ hình đâu Mink sẽ tick cho hứa đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AC và BD là O; giao điểm của KI và AF là O'. Tia FI cắt AC tại điểm P.
Xét tứ giác AKFI: FI//AK; KF//AI => Tứ giác AKFI là hình bình hành.
Do KI cắt AF tại O' => O' là trung điểm của AF.
Xét \(\Delta\)AFC: O' là trung điểm của AF; E là trung điểm của FC
=> O'E là đường trung bình của \(\Delta\)AFC => O'E//AC và O'E=1/2.AC
Ta thấy tứ giác ABCD là hình bình hành; AC giao BD tại O => OA=OC=1/2.AC
Do đó: O'E=OA. Mà O'E//OA (O'E//AC) nên tứ giác AO'EO là hình bình hành.
=> AO' // OE hay AF//BD => ^KAF=^ADB (Đồng vị)
Xét \(\Delta\)AKF và \(\Delta\)DAB: ^KAF=^ADB; ^AKF=^DAB (Vì KF//AB)
=> \(\Delta\)AKF ~ \(\Delta\)DAB (g.g) => \(\frac{AK}{DA}=\frac{KF}{AB}\).
Lại có KF=AI và AB=DC => \(\frac{AK}{AD}=\frac{AI}{DC}\)=> \(\Delta\)KAI ~ \(\Delta\)ADC (c.g.c)
=> ^AIK=^DCA. Mà ^DCA=^BAC nên ^AIK=^BAC => IK // AC (*)
Lại thấy: FI//AK => IP//AK; KI // AC (cmt) => KI//AP.
Từ đó suy ra: Tứ giác APIK là hình bình hành => IP=AK. Mà FI=AK.
=> FI=IP => I là trung điểm của FP.
Xét \(\Delta\)PFC: I là trung điểm FP; E là trung điểm của FC => IE//PC hay IE//AC (**)
Tư (*) và (**) => I;E;K là 3 điểm thẳng hàng (Tiên đề Ơ-clit) (đpcm).
gửi nhầm cái này nè
Câu hỏi của Đỗ Thanh Huyền - Toán lớp 8 | Học trực tuyến
bạn vào nich này tham khảo nè
Kết quả tìm kiếm | Học trực tuyến