Tìm số nguyên x,y biết: x(y+3)-y=-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
(3.y-2)(2.x+1)=-55
=>(3y-2) và(2x+1) là ư(-55)
ta có bảng tính đk x,y
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Lời giải:
$x(y-2)+y-2=3$
$x(y-2)+(y-2)=3$
$(y-2)(x+1)=3$
Với $x,y$ nguyên thì $x+1, y-2$ cũng là số nguyên. Mà tích 2 số bằng 3 nên ta có các TH sau:
TH1: $x+1=1, y-2=3\Rightarrow x=0; y=5$
TH2: $x+1=-1, y-2=-3\Rightarrow x=-2; y=-1$
TH3: $x+1=3, y-2=1\Rightarrow x=2; y=3$
TH4: $x+1=-3, y-2=-1\Rightarrow x=-4; y=1$
Theo đề bài ta có: \(\frac{x-3}{y-2}=\frac{3}{2}\Rightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x-3y=-6+6\)
Vì \(x-y=4\Rightarrow x=4+y\)
\(\Rightarrow2\left(y+4\right)-3y=0\)
\(\Rightarrow2y+8-3y=0\)
\(\Rightarrow-y=-8\)
\(\Rightarrow y=8\)
\(\Rightarrow x=y+4=8+4=12\)
Vậy x = 8 và y = 12
=> x(y-2) + y-2 = 1
=> (x+1)(y-2) = 1
Do x, y ∈ Z => x+1, y-2 ∈ Z
Lập bảng
x+1 | 1 | -1 |
y-2 | 1 | -1 |
x | 0 | -2 |
y | 3 | 1 |
(thử lại t/m)
Vậy (x,y) = (0,3); (-2,1)