Bài 1: chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên . Xác suất để chọn được hai số có tổng là một số chẵn bằng bao nhiêu?
bài 2: số vị trí biểu diễn các nghiệm của phương trình tan3x+cot(x-\(\dfrac{\pi}{2}\))=0 trên đường tròn lượng giác là?
1. Không gian mẫu: \(C_{30}^2\)
Trong 3 số nguyên dương đầu tiên có 15 số chẵn và 15 số lẻ
Hai số có tổng là chẵn khi chúng cùng chẵn hoặc lẻ
\(\Rightarrow C_{15}^2+C_{15}^2\) cách lấy 2 số có tổng chẵn
Xác suất: \(P=\dfrac{C_{15}^2+C_{15}^2}{C_{30}^2}=...\)
2. ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow tan3x=cot\left(\dfrac{\pi}{2}-x\right)\)
\(\Leftrightarrow tan3x=tanx\)
\(\Rightarrow3x=x+k\pi\)
\(\Rightarrow x=\dfrac{k\pi}{2}\)
\(\Rightarrow x=k\pi\)
Có 2 điểm biểu diễn