K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

Giải

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*) 
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6 
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 
=> A chia hết cho 2 
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)

3 tháng 1 2022

Gọi 3 số tự nhiên liên tiếp đó là \(n,n+1,n+2\)

Ta cần chứng minh \(n\left(n+1\right)\left(n+2\right)⋮6\)

Ta thấy \(2.3=6\)mà \(\left(2,3\right)=1\)nên ta theo hướng sẽ chứng minh \(n\left(n+1\right)\left(n+2\right)\)vừa chia hết cho 2, vừa chia hết cho 3

Thật vậy. Khi n là số chẵn thì hiển nhiên \(n\left(n+1\right)\left(n+2\right)⋮2\)

Khi n là số lẻ thì \(n+1⋮2\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮2\)

Vậy \(n\left(n+1\right)\left(n+2\right)⋮2\)với mọi số tự nhiên \(n\)

Khi \(n⋮3\)thì hiển nhiên \(n\left(n+1\right)\left(n+2\right)⋮3\)

Khi n chia cho 3 dư 1 thì \(n+2⋮3\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮3\)

Khi n chia cho 3 dư 2 thì \(n+1⋮3\)và từ đó \(n\left(n+1\right)\left(n+2\right)⋮3\)

Như vậy \(n\left(n+1\right)\left(n+2\right)⋮3\)với mọi số tự nhiên n

Mà \(\left(2,3\right)=1\)nên \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)

Ta có đpcm

Gọi 5 số tự nhiên liên tiếp là a;a+1;a+2;a+3;a+4

Vì S=a(a+1)(a+2)(a+3)(a+4) là tích của 5 số tự nhiên liên tiếp

nên \(S⋮5!=120\)

2 tháng 1 2018

Vì 5 số liên tiếp đó đều có các số chia hết cho 2;3;4;5 mà \(2\cdot3\cdot4\cdot5=120\)

=> tích 5 số đó chia hết cho 120

VD \(9\cdot10\cdot11\cdot12\cdot13=154440⋮120\)

2 tháng 11 2015

ai tích cho tui đi để cho tui tròn 300 điểm coi!

tui sẽ cảm tạ = cách cho lại 3 l i k e !

14 tháng 10 2018

a,ta có 2 STN liên tiếp là : a,a+1 

a . (a + 1 ) 

Trường hợp 1

Nếu a là số chẵn thì \(⋮\)=> a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )

Trường hợp 2 

Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2 

Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2 

14 tháng 10 2018

Câu b : 

ta gọi như câu a : a , a+1,a+2 

ta có : a . ( a + 1 ) . ( a + 2 ) 

TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3 

TH2 Nếu a+1 chia hết cho 3 => Tích của  3 STH liên tiếp chai hết cho 3 

TH3 nếu a + 2 chia hết cho 3 = > Tích của  3 STH liên tiếp chai hết cho 3 

11 tháng 9 2015

gọi 3 stn liên tiếp là : a; a+1; a+2.

ta có: a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+(1+2)=3.a+3=3.(a+1) chia hết cho 3

=> tổng của 3 stn liên tiếp chia hết cho 3.

gọi 4 stn liên tiếp là: a; a+1; a+2; a+3. 

ta có: a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)=4.a+6. Vì 4.a chia hết cho 4 mà 6 ko chia hết cho 4 nên 4.a+6 ko chia hết cho 4

=> tổng 4 stn liên tiếp ko chia hết cho 4.

11 tháng 9 2015

3 số đó có dạng: a+a+1+a+2 = 3a + 3 = 3(a+1) 

Chia hết cho 3

4 số đó có dạng: a+a+1+a+2+a+3 = 4a + 6 = 4(a+1) + 2

4 a chia hết cho 4 mà 2 không chia hết cho 4

=> Không chia hết cho 4

25 tháng 2 2020

Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.

a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)

Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3. 

=> a ( a-1) (a +1) \(⋮\)2; 3 

=> a (a-1) (a+1 ) \(⋮\)6

Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).

b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)

                                                         = b + b + 1 + b +2

                                                          = 3b + 3

Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3

Do đó b + (b+1) + (b+2) chia hết cho 3.

Vậy tổng 3 STN liên tiếp chia hết cho 3.

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮88(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮55\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮55                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow3k(k+1)(k+2)(k+3)(k+4)⋮33                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.83.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120120

21 tháng 11 2018

Mik làm cho câu b thôi ! Thông cảm nhé !

b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1) 
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2) 
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8. 
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3) 
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau 
=> a chia hết cho (b.c) 
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1