Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: 3n2+3n
= 3(n2+n) \(⋮\) 3
Vì n là STN nên:
TH1: n là số tự nhiên lẻ.
\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2
\(\Rightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.
TH2: n là số tự nhiên chẵn.
\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)
3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2
Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.
Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)
3)
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\Rightarrow⇒Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp ⋮⋮8\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮8⋮8(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮5⋮5\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮5⋮5 (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrow⋮3⇒k(k+1)(k+2)(k+3)(k+4)⋮3⋮3 (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrow⇒k(k+1)(k+2)(k+3)(k+4)⋮3.5.8⋮3.5.8=120
Vậy tích của 5 số tự nhiên liên tiếp ⋮120⋮120
Mik làm cho câu b thôi ! Thông cảm nhé !
b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
a,ta có 2 STN liên tiếp là : a,a+1
a . (a + 1 )
Trường hợp 1
Nếu a là số chẵn thì \(⋮\)2 => a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )
Trường hợp 2
Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2
Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2
Câu b :
ta gọi như câu a : a , a+1,a+2
ta có : a . ( a + 1 ) . ( a + 2 )
TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3
TH2 Nếu a+1 chia hết cho 3 => Tích của 3 STH liên tiếp chai hết cho 3
TH3 nếu a + 2 chia hết cho 3 = > Tích của 3 STH liên tiếp chai hết cho 3
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)
Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)
Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)
L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy
a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a)
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2) 2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự
Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.
a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)
Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3.
=> a ( a-1) (a +1) \(⋮\)2; 3
=> a (a-1) (a+1 ) \(⋮\)6
Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).
b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)
= b + b + 1 + b +2
= 3b + 3
Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3
Do đó b + (b+1) + (b+2) chia hết cho 3.
Vậy tổng 3 STN liên tiếp chia hết cho 3.
Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4
=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)
Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)
Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)
Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)
Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120
Vậy tích 5 STN liên tiếp luôn chia hết cho 120.
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\(\Rightarrow\)Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp \(⋮\)8\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮8\)(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số \(⋮5\)\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮5\) (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp\(⋮3\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3\) (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3.5.8\)=120
Vậy tích của 5 số tự nhiên liên tiếp \(⋮120\)
Vì 5 số liên tiếp đó đều có các số chia hết cho 2;3;4;5 mà \(2\cdot3\cdot4\cdot5=120\)
=> tích 5 số đó chia hết cho 120
VD \(9\cdot10\cdot11\cdot12\cdot13=154440⋮120\)
gọi 5 số tự nhiên đó là
A=n(n+1)(n+2)(n+3)(n+4)
ta thấy n+2,n+4 là 2 số chẵn liên tiếp mà tích của 2 số chẵn liên tiếp luôn chia hết cho 8=>A chia hết cho 8(1)
do trong 5 số tự nhiên liên tiếp luôn tồn tại 1 số chia hết cho 5 =>A chia hết cho 5(2)
do n,n+1,n+2 là 3 số tự nhiên liên tiếp
mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3=>A chia hết cho 3(3)
từ 1 ,2,3=> A chia hết cho 3,5,8<=>A chia hết cho bcnn(3,5,8)=120(đpcm)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ai tích cho tui đi để cho tui tròn 300 điểm coi!
tui sẽ cảm tạ = cách cho lại 3 l i k e !