Tìm y thuộc Z sao cho:
\(B=\frac{42-y}{y-15}\)
có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{42-y}{y-13}\)đạt giá trị nhỏ nhất thì \(y-15>0\)và y - 15 nhỏ nhất
y - 15 = 1
y = 16
\(\frac{42-y}{y-13}=\frac{42-16}{16-15}=26\)
Vậy B đạt giá trị nhỏ nhất tại y = 16
\(B=\frac{42-y}{y-15}=\frac{15+27-y}{y-15}=\frac{27-\left(y-15\right)}{y-15}=\frac{27}{y-15}-1\)
Đặt \(D=\frac{27}{y-15}\)
Ta có: \(B_{min}\Leftrightarrow D_{min}\)
ĐK: \(y\ne15\),xét 2 TH:
TH1:Nếu y<15 thì y-15<0,mà 27>0=>D<0
TH2:Nếu y>15 thì y-15>0;mà 27>0=>D>0
Như vậy,muốn \(D_{min}\) ta phải chọn y sao cho D<0,tức là chọn y<15
Khi đó \(D_{min}\) khi số đối của \(D_{max}\Leftrightarrow\left(\frac{27}{15-y}\right)_{max}\Leftrightarrow\left(15-y\right)_{min}\) (do 27 là hằng số dương)
Có 15-y>0,mà \(x\in Z\) nên \(\left(15-y\right)_{min}\Leftrightarrow15-y=1\Leftrightarrow y=14\) (thỏa mãn ĐK)
Vậy \(B_{min}=\frac{42-14}{14-14}=-28\) tại y=14
B=42-y/y-15=27-(y-15)/y-15=27/(y-15)-1
để B có giá trị nhỏ nhất =>27/y-15 - 1 có GTNN=>27/y-15 có GTNN
=>y-15=-1 => y=14
=> B có GTNN = -28 <=>y=14
xét B=(42-y)(y-15)<0<=>1. (42-y)<0
và (y-15)>0<=>y>42 và y>15
=>y>42
2. (42-y)>0
và (y-15)<0
=>y<42 và y<15
=>y<15
xét B> hoạc =0 cmtt
Ta có: 42-y = B(y-15)
42 -y =By -15B
(B+1)y = 42+15B
Nếu B = -1 thì 0y = 27(vô lý)
Do đó B khác -1 nên y =( 42+15B):( B +1) = (15(B +1)+27):(B+1)
Mà y thuộc Z nên 27 chia hết cho B+1
Suy ra: B+1 là ước của 27
Mà B nhỏ nhất nên B+1 nhỏ nhất hay B+1 = -27
Suy ra: B= -28
Thay B =-28 vào: y =( 42+15B):( B +1) =14
Vậy y =14