\(B=\frac{42-y}{y-15}\)

có giá trị nhỏ nhất

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Ta có: 42-y = B(y-15)

          42 -y =By -15B

         (B+1)y = 42+15B

Nếu B = -1 thì 0y = 27(vô lý)

Do đó B khác -1 nên y =( 42+15B):( B +1) = (15(B +1)+27):(B+1)

Mà y thuộc Z nên 27 chia hết cho B+1 

Suy ra: B+1 là ước của 27

Mà B nhỏ nhất  nên B+1 nhỏ nhất hay B+1 = -27

Suy ra: B= -28 

Thay B =-28 vào: y =( 42+15B):( B +1) =14

Vậy y =14

4 tháng 4 2018

Để \(\frac{42-y}{y-13}\)đạt giá trị nhỏ nhất thì \(y-15>0\)và y - 15 nhỏ nhất

y - 15 = 1 

y = 16

\(\frac{42-y}{y-13}=\frac{42-16}{16-15}=26\)

Vậy B đạt giá trị nhỏ nhất tại y = 16

4 tháng 4 2018

có đúng không vậy?

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

13 tháng 8 2017

Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)

2.a.x/7+1/14=(-1)/y

<=>2x/14+1/14=(-1)/y

<=>2x+1/14=(-1)/y

=>(2x+1).y=14.(-1)

<=>(2x+1).y=(-14)

(2x+1) và y là cặp ước của (-14).

(-14)=(-1).14=(-14).1

Ta có bảng giá trị:

2x+1-1141-14
2x-2130-15
x-113/20-15/2
y14-1-141
Đánh giáchọnloạichọnloại

Vậy(x,y) thuộc{(-1;14);(0;-14)}

b.x/9+-1/6=-1/y

<=>2x/9+-3/18=-1/y

<=>2x+(-3)/18=-1/y

=>[2x+(-3)].y=-1.18

<=>(2x-3).y=-18

(2x-3) và y là cặp ước của -18

-18=-1.18=-18.1

Ta có bảng giá trị:

2x-3-1181-18
2x2214-15
x121/22-15/2
y18-1-181
Đánh giáchọnloạichọnloại

Vậy(x;y) thuộc{(1;18);(4;-18)}

29 tháng 8 2016

Chữ I là giá trị tuyệt đối nhé!

20 tháng 2 2020

A = | x - 2 | + | y + 5 | - 15

Ta có \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\forall xy}\)

\(\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\forall xy̸\)

\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\forall xy\)

\(\Rightarrow A\ge-15\forall xy\)

Dấu "=" xảy ra <=>  \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}}\)

<=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)

Vạy Min A = - 15 <=> x = 2 và y = - 5

@@ Học tốt

Chiyuki Fujito

20 tháng 2 2020

Ta có:  |x - 2| \(\ge\)\(\forall\)x; |y + 5| \(\ge\)\(\forall\)y

=> |x - 2| + |y + 5| - 15 \(\ge\)15 \(\forall\)xy

=> A \(\ge\)-15

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)

Vậy MinA = -15 khi x = 2 và y=  -5

25 tháng 8 2019

Lời giải :

\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)

\(\Leftrightarrow P+3=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\)

\(\Leftrightarrow P+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)

\(\Leftrightarrow P+3=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)

\(\Leftrightarrow2\left(P+3\right)=\left(x+y+y+z+z+x\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)

Áp dụng BĐT Cô-si :

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge3\sqrt[3]{\frac{1}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)

Do đó :

\(2\left(P+3\right)\ge\frac{3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\cdot3\sqrt[3]{1}}{\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)

\(\Leftrightarrow2P+6\ge9\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

___

p/s: BĐT còn gọi là BĐT Nesbitt. Có nhiều cách chứng minh, bạn có thể lên gg tìm hiểu.

5 tháng 2 2020

xin thêm 1 cách 

Đặt \(\hept{\begin{cases}a=y+z>0\\b=z+x>0\\c=x+y>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{b+c-a}{2}\\y=\frac{a+c-b}{2}\\z=\frac{a+b-c}{2}\end{cases}}\)Thay vào P ta được:

\(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}\)

\(=\frac{b}{2a}+\frac{c}{2a}-\frac{1}{2}+\frac{a}{2b}+\frac{c}{2b}-\frac{1}{2}+\frac{a}{2c}+\frac{b}{2c}-\frac{1}{2}\)

\(=\left(\frac{b}{2a}+\frac{a}{2b}\right)+\left(\frac{c}{2a}+\frac{a}{2c}\right)+\left(\frac{b}{2c}+\frac{c}{2b}\right)-\frac{3}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{b}{2a}+\frac{a}{2b}\ge2\sqrt{\frac{b}{2a}.\frac{a}{2b}}=1\)

CMTT\(P\ge3-\frac{3}{2}\)

\(\Rightarrow P\ge\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

13 tháng 2 2019

a) ta có : 3/4 = -x/4

=> -x = 3×4/4

=> -x =3

=> x = -3

Mặt khác: -x/4 =21/y

Với x = -3, ta có :

-3/4 = 21/y 

=> y = 21×4/-3 = -28

Lại có : 21/y = z/-80

Với y = -28, ta có:

22/-28 = z/-80

=> z = 21×-80/-28 = 60

Vậy x= -3; y = -28; z = 60

b) Ta có: y-2/2 = 18/-2

=> y -2 = 2×18/-2 

=> y-2 = -18 => y = -16

Lại có : x/3 = y-2/2

Với y = -16, ta có:

x/3 = -16-2/2

=> x/3 = -18/2

=> x = 3×-18/2 => x = -27

Vậy x = -27; y = -16