cho hình vuông ABCD, lấy điểm M bất kỳ trên đoạn BD. Kẻ ME vuông góc với AB và kẻ MF vuông góc với AD. Chứng minh 3 đường thẳng DE, BF và CM đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Gọi I là giao điểm của DE và CF
MFA = FAE = AEM = 900
=> AEMF là hình chữ nhật
BD là tia phân giác của hình vuông ABCD
=> EBM = 450
mà tam giác EBM vuông tại E
=> Tam giác EBM vuông cân tại E
=> EB = EM
mà EM = AF (AEMF là hình chữ nhật)
=> FA = EB
mà AD = AB (ABCD là hình chữ nhật)
=> AB - EB = AD - FA
=> AE = FD
Xét tam giác EAD và tam giác FDC có:
EA = FD (chứng minh trên)
EAD = FDC (= 900)
AD = DC (ABCD là hình chữ nhật)
=> Tam giác EAD = Tam giác FDC (c.g.c)
=> ADE = DCF (2 góc tương ứng)
mà AED = CDE (2 góc so le trong, AB // CD)
=> ADE + AED = DCF + CDE
mà ADE + AED = 900 (tam giác AED vuông tại A)
=> DCF + CDE = 900
=> Tam giác IDC vuông tại I
=> DE _I_ CF
ôi trời ơi, vừa nói lúc chiều là về tạo tk luôn, chứng tỏ dân chơi thời nay là có thật