K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2019

tội nghiệp 4 năm rồi mà dell cs ai trả lời

12 tháng 2 2018

Áp dụng định lý PITAGO :

Ta có : \(c^2=a^2+b^2\)

Nhân cả 2 vế với n thì ta có :

\(\Rightarrow\)\(a^{2n}+b^{2n}=c^{2n}\)

Vậy \(a^{2n}+b^{2n}=c^{2n}\left(ĐPCM\right)\)

2 tháng 3 2018

Làm đúng cho sai không công bằng cút nào nhé trẩu

9 tháng 8 2017

a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z

nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền

ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)

<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca

<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)

Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông 

Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.

Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
 do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,

Áp dụng định lý Pytago.Ta chứng minh được :

x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )

NHỚ TK MK NHALưu Đức Mạnh

23 tháng 3 2017

cô Loan và mọi người ơi giúp tôi với

24 tháng 12 2021

Áp dụng PTG ta có: \(c^2=a^2+b^2\) với \(n=1\)

Giả sử đúng với \(n=k\)

\(\Rightarrow A_k=a^{2k}+b^{2k}\le c^{2k}\)

Cần cm nó cũng đúng với \(n=k+1\)

\(\Rightarrow A_{k+1}=a^{2k+2}+b^{2k+2}=c^{2k+2}\\ \Rightarrow\left(a^{2k}+b^{2k}\right)\left(a^2+b^2\right)-a^2b^{2k}-a^{2k}b^2\le c^{2k}\cdot c^2=c^{2k+2}\)

Vậy BĐT đúng với \(n=k+1\)

\(\RightarrowĐpcm\)

16 tháng 2 2020

+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)

+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)

Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)

Ta sẽ chứng minh điều đó đúng với n + 1.

Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)

Vậy BĐT đúng với n + 1

Vậy bđt đúng với mọi n > 0

Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)