Để 2453b chia hết cho 2 và chia cho 5 dư 1 thì b = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $\overline{5a27b}$ chia hết cho $2$ thì $b$ chẵn (1)
Để $\overline{5a27b}$ chia $5$ dư $1$ thì $b=6$ hoặc $b=1$ (2)
Kết hợp (1) và (2) suy ra $b=6$
Để $\overline{5a27b}$ chia $9$ dư $5$ thì $5+a+2+7+b=14+a+b=14+a+6=20+a$ chia $9$ dư $5$
$\Rightarrow a=3$
Vậy $a=3; b=6$
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
gọi thương của phép chia ax^3 +bx^2+c cho x-2; x^2-1 là G(x);H(x)
ta có:
ax^3 +bx^2 +c=(x-2)G(x)
với x=2 suy ra 8a+4b+c=0
mặt khác:
ax^3 +bx^2 +c=(x^2-1)H(x)+2^x+5
với x=1 suy ra a+b+c=7
với a=-1 suy ra -a+b+c=11/2
suy ra a=3/4;b=-1/12:c=19/3
Để 2453b chia hết cho 2 và chia cho 5 dư 1 thì b = ...
trl
b = 6
TL:
Đ/S: Để thỏa mãn yêu cầu đề bài thì b=6
_HT_