chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3 ( dễ mà phải ko? Giúp mik nha )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
=> p^2 chia 3 dư 1
=> p62-1 chia hết cho 3
ĐPCM
ai tk mik mik lại (nhớ thông báo cho mik để mik nha)
Ta có: p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
TH1: p=3m+1 (m thuộc N)
=>p2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>p2 chia 3 dư 1
TH2: p=3n+2 (n thuộc N)
=>p2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>p2 chia 3 dư 1
Vậy p2 luôn chia 3 dư 1 (với p là SNT >3)
=>p2-1 chia hết cho 3(đpcm)
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Xét số nguyên tố p khi chia cho 3
Ta có: p = 3k + 1 hoặc p = 3k + 2 ( điều kiện k thuộc N* )
- \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1=9k^2+6k⋮3\)( 1 )
- \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1=9k^2+6k⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(p^2-1⋮3\left(đpcm\right)\)
p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
TH1: p=3k+1
\(\Rightarrow p^2=\left(3k+1\right)^2=\left(3k+1\right)3k+\left(3k+1\right)\)
\(=\left(3k+1\right)3k+3k+1=\left(3k+1+1\right)3k+1\) chia 3 dư 1
TH2: p=3k+2
\(\Rightarrow p^2=\left(3k+2\right)^2=\left(3k+2\right)3k+\left(3k+2\right).2\)
\(=\left(3k+2\right)3k+2.3k+2.2\)
\(=\left(3k+2\right)3k+2.3k+3+1\)
\(=3.\left[k\left(3k+2\right)+2k+1\right]+1\) chia 3 dư 1
Do đó bình phương của 1 số nguyên tố luôn chia 3 dư 1, nên trừ đi 1 sẽ chia hết cho 3
\(\Rightarrow p^2-1\text{⋮}3\)
Vậy nếu p là số nguyên tố lớn hơn 3 thì \(p^2-1\text{⋮}3\)
p là số ngyên tố lớn hơn 3=>p không chia hết cho 3
=>p2=3k+1
=>p2-1=3k+1-1=3k chia hết cho 3
=>đpcm
Xét số nguyên tố p khi chia cho 3.Ta có: p=3k+1 hoặc p=3k+2 ( kN*)
Nếu p=3k+1 thì p2-1 = (3k+1)2 -1 = 9k2+6k chia hết cho 3
Nếu p=3k+2 thì p2-1 = ( 3k+2)2-1 = 9k2 + 12k chia hết cho 3
Vậy p2-1 chia hết cho 3.
p là số nguyên tố lớn hơn 3=>p2 chia 3 dư1
=>p2-1 chia hết cho 3
=>đpcm
Ta có : (p-1)(p+1) = p2 - 1
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3. Suy ra : p2 không chia hết cho 3
\(\Rightarrow\)p2 chia 3 dư 1 (Vì p2 là số chính phương)
\(\Rightarrow\)p2 -1 \(⋮\)3
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 2. Suy ra p-1\(⋮\)2 và p+1\(⋮\)2.
\(\Rightarrow\)(p-1)(p+1) là tích của 2 số tự nhiên liên tiếp
Do đó: (p-1)(p+1) \(⋮\)8
Vì (p-1)(p+1) chia hết cho 3 và 8 nên (p-1)(p+1) \(⋮\)24 (đpcm)
vì p là số nguyên tố>3 hay p ko chia hết cho 3
hay p=3k+1và p=3k+2
loại bỏ trường hợp p=3k+1 vì p2-1 ko chia hết cho 3
vây p=3k+2
p=3k+2 suy ra p2-1=(3k+2)2-1=9k+4-1=9k+3=3.(3k+1)
<ĐPCM>