Chứng minh rằng;
1) \(a^5+b^5\ge ab\left(a^3+b^3\right)\) 2)\(a^{n+2}+b^{n+2}\ge ab\left(a^n+b^n\right)\)
mọi người ơi, giúp mình với, mình cần trước t2 mình cản ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
a: Xét tứ giác BHCD có
BH//CD
CH//BD
Do đó: BHCD là hình bình hành
a: Xét ΔCIA và ΔCIM có
CI chung
IA=IM
CA=CM
Do đó: ΔCIA=ΔCIM
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔABM=ΔDBM
Suy ra; BA=BD
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(CN=ND=\dfrac{CD}{2}\)
mà AB=CD
nên AM=MB=CN=ND
Xét ΔMAP và ΔNCQ có
MA=CN
\(\widehat{A}=\widehat{C}\)
AP=CQ
Do đó: ΔMAP=ΔNCQ
b: Ta có: BQ+CQ=BC
AP+DP=AD
mà BC=AD
và CQ=AP
nên BQ=DP
Xét ΔMBQ và ΔNDP có
MB=ND
\(\widehat{B}=\widehat{D}\)
BQ=DP
Do đó: ΔMBQ=ΔNDP
1: AH=căn 4*9=6cm
AB=căn 4*13=2căn 13(cm)
AC=căn 9*13=3*căn 13(cm)
2: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH
=>DE^2=HB*HC
3: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
4: BD*BA+AE*AC
=AH^2+BH^2=AB^2
5: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
6: góc AED+góc MAC
=góc AHD+góc MCA
=góc ABC+góc ACB=90 độ
=>DE vuông góc AM
a: Xét ΔEAI và ΔECD có
EA=EC
góc AEI=góc CED
EI=ED
=>ΔEAI=ΔECD
=>AI=CD
b: ΔEAI=ΔECD
=>góc EAI=góc ECD
=>AI//CD
c: Xét ΔDAI và ΔBDC có
DA=BD
AI=DC
DI=BC
=>ΔDAI=ΔBDC
d: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
nên DE là đường trung bình
=>DE=1/2BC và ED//BC
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
cảm ơn cậu nhiều nhé