Câu 1. Chứng minh rằng số có dạng ̅𝑎𝑎𝑏𝑏𝑐𝑐̅̅̅̅̅̅...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2

=3n+(1+2+3)

=3n+6.

=3(n+2)

Vì n+2EN.

=>3(n+2) chia hết cho 3.

b)Cách lm tương tự.

Ủng hộ nhá!
 

a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3 

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3 

b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )

ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 (  không chia hết cho 4 )

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

26 tháng 6 2017

a)(x - 45) . 27 = 0 

x-45=0:27

x-45=0

x=0+45

x=45.

b)23 . (42 - x) = 23

42-x=23:23

42-x=1

x=42-1

x=41

26 tháng 6 2017

Câu 1:

a)(x-45)*27=0.

=>x-45=0:27.

=>x-45=0.

=>x=0+45.

=>x=45.

Vậy......

b)23*(42-x)=23.

=>42-x=23:23.

=>42-x=1.

=>x=42-1.

=>x=41.

Vậy....

Câu 2:Có vấn đề về đề bài.

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

30 tháng 11 2018

ab = ab

ba = ba

30 tháng 11 2018

* * *

câu a hình như thiếu đề

b) ab+ba

= 10a+b+10b+a

= 11a + 11b (Phần sau tự c/m vì nó dễ)

c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận

* * *

a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )

Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)

= a+a+1+a+2+a+3+a+4

= 5a +( 1+2+3+4)

= 5a + 10 (Phần sau tự c/m)

b)tương tự câu a, nhưng kết quả cuối  = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)

Hok tốt!!!! ^_^

30 tháng 6 2017

a)

Goị 3 số chẵn liên tiếp đó lần lượt là 2k; 2k + 2; 2k + 4 

Ta có: 2k + (2k + 2) + (2k + 4)

= 2k + 2k + 2 + 2k + 4

= 6k + 6 

Vì 6k \(⋮\)6 ; 6 \(⋮\)6 => 2k + (2k + 2) + (2k + 4) \(⋮\)6 => Tổng 3 số chẵn liên tiếp chia hết cho 6 (dpcm)

b) ab + ba

= a0 + b + b0 + a

= (a0 + a) + (bo + b)

= aa + bb 

aa \(⋮\)11 ; bb \(⋮\)11 =>  aa + bb \(⋮\)11 => ab + ba \(⋮\)11 (dpcm)

c) 

+> Vì a + 4b \(⋮\)13 => 10(a + 4b)  \(⋮\)13

=> 10a + 40 b  \(⋮\)13

=> 10a + b + 39b  \(⋮\)13

Mà 39b  \(⋮\)13 => 10a + b  \(⋮\)13 (dpcm)

+> Vì 10a + b \(⋮\)13 => 4(10a + b)  \(⋮\)13

=> 40a + 4b  \(⋮\)13

=> 39a + a + 4b  \(⋮\)13

Mà 39a  \(⋮\)13 => a + 4b  \(⋮\)13 (dpcm)

16 tháng 7 2017

a) Gọi số thứ nhất là k, số thứ hai là k + 1, số thứ ba là k + 2, số thứ tư là k + 3. Ta có

k + k + 1 + k + 2 + k + 3

k x 4 + 6

Vì k x 4 + 6 ko chia hết cho 4 nên tổng của 4 số tự nhiên liên tiếp ko chia hết cho 4.

b) Ta có:

\(\overline{aaa}=3\times37\times a\)

Vậy, \(\overline{aaa}⋮37\)

16 tháng 7 2017

a) gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3

Theo đề bài ta có: a + (a+1)+ ( a+2)+(a+3) = (a+a+a+a)+(1+2+3) = 4a + 6 =>...............

b) \(\overline{aaa\overline{ }=100a+10+a=111a}\)

Do 11 chia hết cho 37 => 111a chia hết cho 37=> aaa chia hết cho 37

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

6 tháng 10 2016

2) Gọi 5 số tự nhiên liên tiếp là : a;a+1;a+2;a+3;a+4 

Tổng bằng : a+a+1+a+2+a+3+a+4=5a+10 Vậy số này chia chỉ chia hết cho 5 

Đề bài bị sai : 

b) Gọi 5 số lẻ liên tiếp là : 2k+1;2k+3;2k+5;2k+7;2k+9 

Tổng là : 2k+1+2k+3+2k+5+2k+7+2k+9=10k +25 =10k+20+5 =10(k+2)+5 

10(k+2) chia hết cho 10 ; suy ra 10(k+2)+5 chia 10 dư 5 

3) a) abcabc=abc.1000+abc=abc.1001 

Mà 1001=7.11.13 

Đấy thế là xong 

b) abcdeg =