Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2
=3n+(1+2+3)
=3n+6.
=3(n+2)
Vì n+2EN.
=>3(n+2) chia hết cho 3.
b)Cách lm tương tự.
Ủng hộ nhá!
a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 ( không chia hết cho 4 )
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a)(x - 45) . 27 = 0
x-45=0:27
x-45=0
x=0+45
x=45.
b)23 . (42 - x) = 23
42-x=23:23
42-x=1
x=42-1
x=41
Câu 1:
a)(x-45)*27=0.
=>x-45=0:27.
=>x-45=0.
=>x=0+45.
=>x=45.
Vậy......
b)23*(42-x)=23.
=>42-x=23:23.
=>42-x=1.
=>x=42-1.
=>x=41.
Vậy....
Câu 2:Có vấn đề về đề bài.
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^
a)
Goị 3 số chẵn liên tiếp đó lần lượt là 2k; 2k + 2; 2k + 4
Ta có: 2k + (2k + 2) + (2k + 4)
= 2k + 2k + 2 + 2k + 4
= 6k + 6
Vì 6k \(⋮\)6 ; 6 \(⋮\)6 => 2k + (2k + 2) + (2k + 4) \(⋮\)6 => Tổng 3 số chẵn liên tiếp chia hết cho 6 (dpcm)
b) ab + ba
= a0 + b + b0 + a
= (a0 + a) + (bo + b)
= aa + bb
Vì aa \(⋮\)11 ; bb \(⋮\)11 => aa + bb \(⋮\)11 => ab + ba \(⋮\)11 (dpcm)
c)
+> Vì a + 4b \(⋮\)13 => 10(a + 4b) \(⋮\)13
=> 10a + 40 b \(⋮\)13
=> 10a + b + 39b \(⋮\)13
Mà 39b \(⋮\)13 => 10a + b \(⋮\)13 (dpcm)
+> Vì 10a + b \(⋮\)13 => 4(10a + b) \(⋮\)13
=> 40a + 4b \(⋮\)13
=> 39a + a + 4b \(⋮\)13
Mà 39a \(⋮\)13 => a + 4b \(⋮\)13 (dpcm)
a) Gọi số thứ nhất là k, số thứ hai là k + 1, số thứ ba là k + 2, số thứ tư là k + 3. Ta có
k + k + 1 + k + 2 + k + 3
k x 4 + 6
Vì k x 4 + 6 ko chia hết cho 4 nên tổng của 4 số tự nhiên liên tiếp ko chia hết cho 4.
b) Ta có:
\(\overline{aaa}=3\times37\times a\)
Vậy, \(\overline{aaa}⋮37\)
a) gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3
Theo đề bài ta có: a + (a+1)+ ( a+2)+(a+3) = (a+a+a+a)+(1+2+3) = 4a + 6 =>...............
b) \(\overline{aaa\overline{ }=100a+10+a=111a}\)
Do 11 chia hết cho 37 => 111a chia hết cho 37=> aaa chia hết cho 37
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
2) Gọi 5 số tự nhiên liên tiếp là : a;a+1;a+2;a+3;a+4
Tổng bằng : a+a+1+a+2+a+3+a+4=5a+10 Vậy số này chia chỉ chia hết cho 5
Đề bài bị sai :
b) Gọi 5 số lẻ liên tiếp là : 2k+1;2k+3;2k+5;2k+7;2k+9
Tổng là : 2k+1+2k+3+2k+5+2k+7+2k+9=10k +25 =10k+20+5 =10(k+2)+5
10(k+2) chia hết cho 10 ; suy ra 10(k+2)+5 chia 10 dư 5
3) a) abcabc=abc.1000+abc=abc.1001
Mà 1001=7.11.13
Đấy thế là xong
b) abcdeg =