Tìm GTNN của
A= 3/x-7
B= 40-3x/13-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
b) Ta có: \(B=2x^2-8x+15\)
\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu '=' xảy ra khi x=2
a. `A=x^2-5x+7`
`=x^2-2.x. 5/2 + (5/2)^2 +3/4`
`=(x-5/2)^2 + 3/4`
`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`
b) `B=2x^2-8x+15`
`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`
`=(\sqrt2x-2\sqrt2)^2+7`
`=> B_(min)=7 <=> x=2`.
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)
\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)
\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
a: Ta có: \(N=-x^2-x-1\)
\(=-\left(x^2+x+1\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: ta có: \(B=3x^2+4x-13\)
\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)
\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)
\(2\left|x+1\right|+\left|2x-3\right|\)
\(=\left|2x+2\right|+\left|2x-3\right|\)
\(=\left|2x+2-2x+3\right|\ge5\)
\(A_{min}=5\)
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
\(a,A=\left|2-4x\right|-6\ge-6\\ A_{min}=-6\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,x^2+1\ge1\Leftrightarrow B=1-\dfrac{4}{x^2+1}\ge1-\dfrac{4}{1}=-3\\ B_{min}=-3\Leftrightarrow x=0\)