vẽ n tia chung gốc trong hình vẽ có 36 góc tính n
(giúp mình với mình đang cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n là 9
Vì dưới dạng tổng quát nó có dạng:
n.(n-1):2 vì không lặp lại
n.(n-1):2=36
n.(n-1)=36.2
n(n-1)=72
=>9(9-1)=72
Vậy : n=9
Từ công thức tính số góc tạo thành từ n tia là: n.(n - 1)/2
Theo đầu ta có số góc là 36 nên : n.(n - 1)/2 = 72
=> n.(n - 1) = 72 = 9.8
Vậy n = 9
1 tia nối với (n-1) tia còn lại thì được (n-1) tia
Vậy có số góc là: n.(n-1)
TRên thực tế mỗi tia được tính 2 lần nên số góc thật là:
\(\frac{n.\left(n-1\right)}{2}\)
Theo đề bài ra thì: \(\frac{n\left(n-1\right)}{2}=36\)
=> n(n-1)=72
Vì n là số tự nhiên và n, n-1 là 2 số tự nhiên liên tiếp mà 72=8.9
=> n=9
Vẽ các tia đỉnh O đi qua n điểm sẽ có n tia
Số góc đỉnh O tạo thành là: \(C^2_n\)(góc)
a) Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả số góc là:
30 : 2 = 15 góc
b) Mỗi tia tạo với n-1 tia còn lại n-1 góc mà có n tia như vậy nên có tất cả số góc là:
n x (n-1) góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả số góc là:
n x (n-1) : 2 góc
a, Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là: 6 . 5 = 30 (góc)
Vì mỗi góc được tính lặp lại 2 lần nên có: 30: 2 = 15 (góc)
b, Mỗi tia tạo với n-1 tia còn lại n-1 góc mà có n tia như vậy nên có: n . (n-1) (góc)
Vì mỗi góc được tính lặp lại 2 lần nên có: n . (n-1) : 2 (góc)
CÁC GÓC: GÓC xOy; GÓC xOA; GÓC xON; GÓC xOB; GÓC MOA; GÓC MON; GÓC MOy; GÓC MOB; GÓC AON; GÓC AOB; GÓC AOy; GÓC NOB; GÓC yOB; GÓC yNO; GÓC xMO.
CÓ 15 GÓC
Từ công thức:Cho n tia chung gốc,ta vẽ được \(\frac{n.\left(n+1\right)}{2}\) góc
=>\(\frac{n.\left(n+1\right)}{2}=36\)
=>n.(n+1)=36.2
=>n.(n+1)=72
=>n.(n+1)=8.9
=>n=8
n tia chung gốc suy ra hình vẽ có n(n-1)/2 = 36 góc
n(n-1) =72 = 8*9
Vậy n = 9