K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

B A E C M

\(\widehat{MDA}=1v\)( Vì MD vuông góc AB )

\(\widehat{MEA}=1v\)( vì ME vuông góc AC )

\(\widehat{BAC}=1v\)( gt )

\(\Rightarrow\)ADME - hình chữ nhật ( đpcm )

26 tháng 11 2017

Cảm ơn bạn Hiếu

Mình đã hiểu cách làm rồi

a: Xét tứ giác ADME có

gócADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: góc AHM=góc AEM=góc ADM=90 độ

=>A,D,H,M,E cùng thuộc đường tròn đường kính AM

mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)

nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ

c: DE=AM

AM>=AH

=>DE>=AH

Dấu = xảy ra khi M trùng với H

=>M là chân đường cao kẻ từ A xuống BC

Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à

NV
12 tháng 8 2021

Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)

\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)

Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)

Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)

\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)

\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

30 tháng 10 2018

tam giác ABC vuông ở A cho ta góc BAC =90 độ 

MD vuông góc với AB => góc MDA =90 độ 

ME vuông góc với AC => góc MEA =90 độ 

=> tứ giác ADME là hình chữ nhật => DE=AM =>DE min<=> AM min <=> AM vuông góc với BC 

Vậy M là chân đường cao kẻ từ A , M thuộc BC thì DE có độ dài nhỏ nhất