K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 12 2021

Gọi O là tâm đáy \(\Rightarrow OA=\dfrac{1}{2}AC=\sqrt{2}\)

\(\Rightarrow SO=\sqrt{SA^2-OA^2}=\sqrt{2}\)

\(\Rightarrow OA=OB=OC=OD=SO\Rightarrow\) O đồng thời là tâm mặt cầu ngoại tiếp chóp

\(\Rightarrow R=OA=\sqrt{2}\)

\(\Rightarrow V=\dfrac{4}{3}\pi R^3=\dfrac{8\pi\sqrt{2}}{3}\)

19 tháng 8 2017

17 tháng 10 2019

Đáp án D

Ta có R = S A 2 4 + R d 2 = a 2 + a 2 2 2 = a 3 2 ⇒ S = 4 π R 2 = 6 π a 2  

12 tháng 10 2018

23 tháng 3 2017

Chọn D

Phương pháp: Xác định tâm của mặt cầu

ngoại tiếp khối chóp.

19 tháng 6 2017

28 tháng 3 2019

Đáp án D

Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó  O I ⊥ ( A B C D )

⇒ I A = I B = I C = I D mà  ∆ S A C  vuông tại A I A = I S = I C . Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra I A = a 2 ⇒ S C = 2 a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng A B C D ⇒ S C ; A B C D ^ = S C ; A C ^ = S C A ^ = 45 °  .Suy ra  ∆ S A C  vuông cân  ⇒ S A = A C = 2 a ⇒ V S . A B C D = 1 3 . S A . S A B C D = 1 3 . 2 a . a . a 3 = 2 a 3 3 3 .

14 tháng 10 2018

Chọn D.

Phương pháp: Xác định tâm của mặt cầu ngoại tiếp khối chóp.

Cách giải: Gọi O là tâm của đáy. I là tâm của mặt cầu ngoại tiếp hình chóp. Dễ thấy I là trung điểm SC    S C A ^ = 45 °

29 tháng 11 2018

Đáp án A

Phương pháp:

Sử dụng phương pháp tọa độ hóa.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ.

Trong đó, B(2a;0;0), C(2a;2a;0), E(a;0;0), S(0;0;a)

 

Gọi I(x0;y0;z0) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, IS2 = IB2 = IC2 = IE2

15 tháng 1 2018

Chọn đáp án C