CMR:
1/2!+1/3!+1/4!+...+1/1986!<1
với n!=1.2.3....n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11 : ta có :
\(\frac{\left(1986^2-1992\right)\left(1986^2+3972-3\right)1987}{1983.1985.1988.1989}\)
\(=\frac{\left(1986^2-3.1986+2.1986-6\right)\left(1986^2+2.1986+1-4\right)1987}{1983.1985.1988.1989}\)
\(=\frac{\left(1986-3\right)\left(1986+2\right)\left[\left(1986+1\right)^2-2^2\right]1987}{1983.1985.1988.1989}\)
\(=\frac{1983.1988\left(1987-2\right)\left(1987+2\right)1987}{1983.1988.1985.1989}\)
\(=\frac{1983.1985.1988.1989.1987}{1983.1985.1988.1989}=1987\)
bằng 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Ta có:\(1000\equiv1\left(mod3\right)\Rightarrow1000^{2016}\equiv1\left(mod3\right)\Rightarrow1000^{2016}-1\equiv0\left(mod3\right)\)
=>10002016-1 chia hết cho 3
\(1986\equiv0\left(mod3\right)\Rightarrow1986^{2016}\equiv0\left(mod3\right)\Rightarrow1986^{2016}-1\equiv-1\left(mod3\right)\)
=>19862016-1 không chia hết cho 3
\(A=\frac{1986^{2014}-1}{1000^{2014}-1}\) có mẫu số chia hết cho 3, tử số không chia hết cho 3=>tử số không chia hết cho mẫu số=>A không thể là số nguyên